Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Nemish, Yuriy"'
We study Hermitian non-commutative quadratic polynomials of multiple independent Wigner matrices. We prove that, with the exception of some specific reducible cases, the limiting spectral density of the polynomials always has a square root growth at
Externí odkaz:
http://arxiv.org/abs/2308.16778
Autor:
Krüger, Torben, Nemish, Yuriy
For random matrices with block correlation structure we show that the fluctuations of linear eigenvalue statistics are Gaussian on all mesoscopic scales with universal variance which coincides with that of the Gaussian unitary or Gaussian orthogonal
Externí odkaz:
http://arxiv.org/abs/2303.17020
Publikováno v:
In Journal of Functional Analysis 15 December 2024 287(12)
In the customary random matrix model for transport in quantum dots with $M$ internal degrees of freedom coupled to a chaotic environment via $N\ll M$ channels, the density $\rho$ of transmission eigenvalues is computed from a specific invariant ensem
Externí odkaz:
http://arxiv.org/abs/1911.05112
We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have the same variance. We show that under certain conditions the local law holds up to the optimal scale, i.e., the eigenvalue density
Externí odkaz:
http://arxiv.org/abs/1804.11340
For a general class of large non-Hermitian random block matrices $\mathbf{X}$ we prove that there are no eigenvalues away from a deterministic set with very high probability. This set is obtained from the Dyson equation of the Hermitization of $\math
Externí odkaz:
http://arxiv.org/abs/1706.08343
Autor:
Nemish, Yuriy
We consider products of independent square non-Hermitian random matrices. More precisely, let X(1),...,X(n) be random matrices with independent entries (real or complex with independent real and imaginary parts) with zero mean and variance 1/N. Soshn
Externí odkaz:
http://arxiv.org/abs/1512.03117
Publikováno v:
In Journal of Functional Analysis 1 July 2020 278(12)
Autor:
Nemish, Yuriy
We consider products of independent square random non-Hermitian matrices. More precisely, let $n\geq 2$ and let $X_1,\ldots,X_n$ be independent $N\times N$ random matrices with independent centered entries with variance $N^{-1}$. It was shown by G\"o
Externí odkaz:
http://arxiv.org/abs/1412.2410
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.