Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Nelson Dunford"'
Autor:
Harro Heuser, R. E. Fullerton, C. C. Braunschweiger, Ebbe Thue Poulsen, Jean Leray, Gregers Krabbe, Anastasios Mallios, Tosio Kato, Felix E. Browder, Takako Kōmura, Yukio Kōmura, Helmut H. Schaefer, Kosaku Yosida, Nelson Dunford, Joseph Nieto, W. A. J. Luxemburg, A. C. Zaanen, J. L. B. Cooper, R. S. Bucy, G. Maltese, Jean Dieudonné, H. G. Garnir, Heinz König, Angus E. Taylor, Max Landsberg, Thomas Riedrich, E. Michael, A. Martineau, J. L. Kelley, Vlastimil Pták, Shozo Koshi, Horst Leptin, H. Reiter, L. Waelbroeck, N. Aronszajn, P. Szeptycki, Richard Arens, Czeslaw Bessaga, Victor Klee, Hidegoro Nakano, Joseph Wloka, Ky Fan, Hubert Berens, P. L. Butzer, H. O. Cordes, Stefan Hildebrandt, Gerhard Neubauer, J. B. Diaz, F. T. Metcalf, Günter Ewald, M. A. Naǐmark, Elmar Thoma, Bernhard Gramsch
Autor:
Jacob T. Schwartz, Nelson Dunford
Publikováno v:
Gian-Carlo Rota on Analysis and Probability ISBN: 9781461274025
Gian-Carlo Rota on Analysis and Probability
Gian-Carlo Rota on Analysis and Probability
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::27218ba4db8d2b6497924ef7c15c4747
https://doi.org/10.1007/978-1-4612-2070-1_13
https://doi.org/10.1007/978-1-4612-2070-1_13
Autor:
Nelson Dunford
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 85:111-118
SynopsisA general ergodic theorem is proved for semi-group operators on B-space X. In particular X may be a Lebesgue space Lp(S, Σ, μ) where (S, Σ, μ) is a positive measure space.The discussion is based on the theory of semi-groups as developed b
Autor:
Nelson Dunford
Publikováno v:
Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces. :61-73
Autor:
Nelson Dunford
Publikováno v:
Advances in Mathematics. 17:337-342
Publikováno v:
The American Mathematical Monthly. 55:105-110
Autor:
Robert Schatten, Nelson Dunford
Publikováno v:
Transactions of the American Mathematical Society. 59:430-436
The direct product Ei®nE2 of two Banach spaces Eu E2 has been defined before [5](2) as the closure of the normed linear set $In(Ei, E2) (that is, linear set 3i(£i, £2) of expressions 22Â-ifi®4>i, hi which N is a norm) [5, p. 200, Definition 1.3]
Autor:
Nelson Dunford, Irving E. Segal
Publikováno v:
Bulletin of the American Mathematical Society. 52:911-914
Autor:
Einar Hille, Nelson Dunford
Publikováno v:
Bull. Amer. Math. Soc. 53, no. 8 (1947), 799-805
Autor:
Nelson Dunford, B. J. Pettis
Publikováno v:
Transactions of the American Mathematical Society. 47:323-392