Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Neil, Rofsky"'
Autor:
Veronica Clavijo Jordan, André F. Martins, Erica Dao, Kalotina Geraki, Sara Chirayil, Xiaodong Wen, Pooyan Khalighinejad, Daniel Parrott, Xiaojing Wang, Patricia Gonzalez Pagan, Neil Rofsky, Michael Farquharson, A. Dean Sherry
Publikováno v:
npj Imaging, Vol 2, Iss 1, Pp 1-9 (2024)
Abstract Previous studies have shown that the zinc-responsive MRI probe, GdL1, can distinguish healthy versus malignant prostate tissues based upon differences in zinc content and secretion. In this study, mice were fed chow containing low, normal, o
Externí odkaz:
https://doaj.org/article/4e0f64bbff6e47ceb4a36a4bcc8f3c65
Autor:
Neil Rofsky
Publikováno v:
Journal of Vascular and Interventional Radiology. 14:P200-P202
Autor:
Jonathan, Chappelow, B Nicolas, Bloch, Neil, Rofsky, Elizabeth, Genega, Robert, Lenkinski, William, DeWolf, Anant, Madabhushi
Publikováno v:
Medical physics. 38(4)
By performing registration of preoperative multiprotocol in vivo magnetic resonance (MR) images of the prostate with corresponding whole-mount histology (WMH) sections from postoperative radical prostatectomy specimens, an accurate estimate of the sp
Autor:
Robert Toth, Elizabeth Genega, Neil Rofsky, Jonathan Chappelow, B. Nicolas Bloch, Satish Viswanath, Anant Madabhushi, Robert E. Lenkinski, Mark A. Rosen, Arjun Kalyanpur
Publikováno v:
Medical Imaging: Computer-Aided Diagnosis
Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers hi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4da7e037cba630f00ff3c6952c562fdd
https://europepmc.org/articles/PMC4188347/
https://europepmc.org/articles/PMC4188347/
Autor:
B. Nicolas Bloch, Elizabeth Genega, Neil Rofsky, Robert E. Lenkinski, Satish Viswanath, William C. DeWolf, Anant Madabhushi, Jonathan Chappelow
Publikováno v:
Medical Imaging: Image Processing
We present a new method for fully automatic non-rigid registration of multimodal imagery, including structuraland functional data, that utilizes multiple texutral feature images to drive an automated spline based non-linearimage registration procedur
Autor:
Robert Lenkinski, B. Bloch, Fangbing Liu, Sven Perner, Mark Rubin, Elizabeth Genega, Neil Rofsky, Sandra Gaston
Publikováno v:
MAGMA: Magnetic Resonance Materials in Physics, Biology & Medicine; Nov2008, Vol. 21 Issue 6, p411-421, 11p