Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Nechibvute, A."'
Autor:
Harry D. Mafukidze, Action Nechibvute, Abid Yahya, Irfan Anjum Badruddin, Sarfaraz Kamangar, Mohamed Hussien
Publikováno v:
IEEE Access, Vol 12, Pp 100939-100956 (2024)
Over the last decade, Data Science has emerged as one of the most important subjects that has had a major impact on industry. This is due to the continual development of scientific methods, algorithms, processes, and computational tools that help to
Externí odkaz:
https://doaj.org/article/ba6aa69b3dba4374b649ffe644213cfe
Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues
Autor:
Mazunga, Felix, Nechibvute, Action
Publikováno v:
In Scientific African March 2021 11
Autor:
Taruvinga, N.1 (AUTHOR) taruvingan@staff.msu.ac.zw, Nechibvute, A.1 (AUTHOR) nechibvutea@staff.msu.ac.zw, Chawanda, A.1 (AUTHOR) chawandaa@staff.msu.ac.zw
Publikováno v:
IETE Journal of Research. Jul2023, Vol. 69 Issue 7, p4700-4706. 7p.
Publikováno v:
Sensors, Vol 22, Iss 22, p 8937 (2022)
In this paper, a detailed review of microcontroller unit (MCU)-based wireless sensor node platforms from recently published research articles is presented. Despite numerous research efforts in the fast-growing field of wireless sensor devices, energy
Externí odkaz:
https://doaj.org/article/bab3f50a958e43189a694c4e734b39c3
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nechibvute, A., Mafukidze, H. D.
Publikováno v:
IETE Technical Review; May/Jun2024, Vol. 41 Issue 3, p312-325, 14p
Autor:
Harry Dzingai Mafukidze, Godliver Owomugisha, Daniel Otim, Action Nechibvute, Cloud Nyamhere, Felix Mazunga
Publikováno v:
Applied Sciences, Vol 12, Iss 17, p 8412 (2022)
Convolutional neural networks (CNNs) are the gold standard in the machine learning (ML) community. As a result, most of the recent studies have relied on CNNs, which have achieved higher accuracies compared with traditional machine learning approache
Externí odkaz:
https://doaj.org/article/e81233f38cb1488589d1ff64e370c78a
Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues
Autor:
Felix Mazunga, Action Nechibvute
Publikováno v:
Scientific African, Vol 11, Iss , Pp e00720- (2021)
Wireless sensor network (WSN) technology has gained increasing importance in industrial automation, agriculture, smart cities, environmental monitoring, target tracking, structural health monitoring, healthcare, military applications, and so on. WSNs
Externí odkaz:
https://doaj.org/article/40aa701e952f4fda8b18b8f589af2697
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Acta Electrotechnica et Informatica, Vol 17, Iss 4, Pp 19-27 (2017)
This radio frequency (RF) energy harvesting is an emerging technology and research area that promises to produce energy to run low-power wireless devices. The great interest that has recently been paid to RF harvesting is predominantly driven by the
Externí odkaz:
https://doaj.org/article/451c5764a2244db38117dd08d5e98238