Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ndikubwayo, Innocent"'
Given coprime integers $k, \ell$ with $k > \ell \geqslant 1$ and arbitrary complex polynomials $A(z), B(z)$ with $\deg(A(z)B(z))\geqslant 1$, we consider the polynomial sequence $\{P_n(z)\}$ satisfying a three-term recurrence $P_n(z)+B(z)P_{n-\ell}(z
Externí odkaz:
http://arxiv.org/abs/2210.06403
Autor:
Ndikubwayo, Innocent
Below we establish the conditions guaranteeing the reality of all the zeros of polynomials $P_n(z)$ in the polynomial sequence $\{P_n(z)\}_{n=1}^{\infty}$ satisfying a five-term recurrence relation $$P_{n}(z)= zP_{n-1}(z) + \alpha P_{n-2}(z)+\beta P_
Externí odkaz:
http://arxiv.org/abs/2011.13258
Autor:
Ndikubwayo, Innocent
This paper discusses the location of zeros of polynomials in a polynomial sequence $\{P_n(z)\}$ generated by a three-term recurrence relation of the form $P_n(z)+ B(z)P_{n-1}(z) +A(z) P_{n-k}(z)=0$ with $k>2$ and the standard initial conditions $P_{0
Externí odkaz:
http://arxiv.org/abs/2010.10358
A conjecture of Khang Tran [6] claims that for an arbitrary pair of polynomials $A(z)$ and $B(z)$, every zero of every polynomial in the sequence $\{P_n(z)\}_{n=1}^\infty$ satisfying the three-term recurrence relation of length $k$ $$P_n(z)+B(z)P_{n-
Externí odkaz:
http://arxiv.org/abs/2001.09248
Autor:
Ndikubwayo, Innocent
We study the root distribution of a sequence of polynomials $\{P_n(z)\}_{n=0}^{\infty}$ with the rational generating function $$ \sum_{n=0}^{\infty} P_n(z)t^n= \frac{1}{1+ B(z)t^\ell +A(z)t^k}$$ for $(k,\ell)=(3,2)$ and $(4,3)$ where $A(z)$ and $B(z)
Externí odkaz:
http://arxiv.org/abs/1910.00278
Autor:
Ndikubwayo, Innocent
This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\{P_i\}_{i=1}^{\infty}$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0$ with the s
Externí odkaz:
http://arxiv.org/abs/1812.08601
Autor:
Ndikubwayo, Innocent
In this thesis, we study the problem of location of the zeros of individual polynomials in sequences of polynomials generated by linear recurrence relations. In paper I, we establish the necessary and sufficient conditions that guarantee hyperbolicit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0c94fb5802560761a79f040ec355530d
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-191522
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-191522
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A conjecture of Khang Tran [6] claims that for an arbitrary pair of polynomials $A(z)$ and $B(z)$, every zero of every polynomial in the sequence $\{P_n(z)\}_{n=1}^\infty$ satisfying the three-term recurrence relation of length $k$ $$P_n(z)+B(z)P_{n-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b66655be0cc6b63b2fe9f289f6f0f38
http://arxiv.org/abs/2001.09248
http://arxiv.org/abs/2001.09248