Zobrazeno 1 - 10
of 9 628
pro vyhledávání: '"Nazeer, A. A."'
Autor:
Fokam, Cabrel Teguemne, Nazeer, Khaleelulla Khan, König, Lukas, Kappel, David, Subramoney, Anand
The increasing size of deep learning models has created the need for more efficient alternatives to the standard error backpropagation algorithm, that make better use of asynchronous, parallel and distributed computing. One major shortcoming of backp
Externí odkaz:
http://arxiv.org/abs/2410.05985
Autor:
Das, Swagat R., Merello, Manuel, Bronfman, Leonardo, Liu, Tie, Garay, Guido, Stutz, Amelia, Mardones, Diego, Zhou, Jian-Wen, Sanhueza, Patricio, Liu, Hong-Li, Vázquez-Semadeni, Enrique, Gómez, Gilberto C., Palau, Aina, Tej, Anandmayee, Xu, Feng-Wei, Baug, Tapas, Dewangan, Lokesh K., He, Jinhua, Zhu, Lei, Li1, Shanghuo, Juvela, Mika, Saha, Anindya, Issac, Namitha, Hwang, Jihye, Nazeer, Hafiz, Toth, L. Viktor
Hub-filament systems are considered as natural sites for high-mass star formation. Kinematic analysis of the surroundings of hub-filaments is essential to better understand high-mass star formation within such systems. In this work, we present a deta
Externí odkaz:
http://arxiv.org/abs/2409.19204
Autor:
Biswas, Debaditya, Gonzalez, Fernando Araiza, Henry, William, Karki, Abishek, Morean, Casey, Nadeeshani, Sooriyaarachchilage, Sun, Abel, Abrams, Daniel, Ahmed, Zafar, Aljawrneh, Bashar, Alsalmi, Sheren, Ambrose, George, Armstrong, Whitney, Asaturyan, Arshak, Assumin-Gyimah, Kofi, Gayoso, Carlos Ayerbe, Bandari, Anashe, Basnet, Samip, Berdnikov, Vladimir, Bhatt, Hem, Bhetuwal, Deepak, Boeglin, Werner, Bosted, Peter, Brash, Edward, Bukhari, Masroor, Chen, Haoyu, Chen, Jian-Ping, Chen, Mingyu, Christy, Michael Eric, Dusa, Silviu Covrig, Craycraft, Kayla, Danagoulian, Samuel, Day, Donal, Diefenthaler, Markus, Dlamini, Mongi, Dunne, James, Duran, Burcu, Dutta, Dipangkar, Ent, Rolf, Evans, Rory, Fenker, Howard, Fomin, Nadia, Fuchey, Eric, Gaskell, David, Gautam, Thir Narayan, Hansen, Jens-Ole, Hauenstein, Florian, Hernandez, A., Horn, Tanja, Huber, Garth, Jones, Mark, Joosten, Sylvester, Kabir, Md Latiful, Keppel, Cynthia, Khanal, Achyut, King, Paul, Kinney, Edward, Kohl, Michael, Lashley-Colthirst, Nathaniel, Li, Shujie, Li, Wenliang, Liyanage, Anusha Habarakada, Mack, David, Malace, Simona, Markowitz, Pete, Matter, John, Meekins, David, Michaels, Robert, Mkrtchyan, Arthur, Mkrtchyan, Hamlet, Moore, Zae, Nazeer, S. J., Nanda, Shirsendu, Niculescu, Gabriel, Niculescu, Maria, Nguyen, Huong, Nuruzzaman, Nuruzzaman, Pandey, Bishnu, Park, Sanghwa, Pooser, Eric, Puckett, Andrew, Rehfuss, Melanie, Reinhold, Joerg, Sawatzky, Bradley, Smith, G., Szumila-Vance, Holly, Tadepalli, Arun, Tadevosyan, Vardan, Trotta, Richard, Wood, Stephen, Yero, Carlos, Zhang, Jinlong
Nucleon structure functions, as measured in lepton-nucleon scattering, have historically provided a critical observable in the study of partonic dynamics within the nucleon. However, at very large parton momenta it is both experimentally and theoreti
Externí odkaz:
http://arxiv.org/abs/2409.15236
Autor:
Lin, W., Rostomyan, T., Gilman, R., Strauch, S., Meier, C., Nestler, C., Ali, M., Atac, H., Bernauer, J. C., Briscoe, W. J., Ndukwe, A. Christopher, Cline, E. W., Deiters, K., Dogra, S., Downie, E. J., Duan, Z., Fernando, I. P., Flannery, A., Ghosal, D., Golossanov, A., Guo, J., Ifat, N. S., Ilieva, Y., Kohl, M., Lavrukhin, I., Li, L., Lorenzon, W., Mohanmurthy, P., Nazeer, S. J., Nicol, M., Patel, T., Prosnyakov, A., Ransome, R. D., Ratvasky, R., Reid, H., Reimer, P. E., Richards, R., Ron, G., Ruimi, O. M., Salamone, K., Sparveris, N., Wuerfel, N., Yaari, D. A.
The MUon Scattering Experiment (MUSE) was motivated by the proton radius puzzle arising from the discrepancy between muonic hydrogen spectroscopy and electron-proton measurements. The MUSE physics goals also include testing lepton universality, preci
Externí odkaz:
http://arxiv.org/abs/2408.13380
Autor:
Kulsoom, Farzana, Savazzi, Pietro, Dell'Acqua, Fabio, Chaudhry, Hassan Nazeer, Vizziello, Anna
Galvanic coupled-intra-body communication (GC-IBC) is an innovative research area contributing to transform personalized medicine by enabling seamless connectivity and communication among implanted devices. To establish a reliable communication link
Externí odkaz:
http://arxiv.org/abs/2407.01195
In this paper, we introduce a new concept in Nil-semicommutative modules and present it as an extension of Nil-semicommutative rings to modules. We prove that the class of Nil-semicommutative modules is contained in the class of Weakly semicommutativ
Externí odkaz:
http://arxiv.org/abs/2406.19725
Autor:
Mukherji, Rishav, Schöne, Mark, Nazeer, Khaleelulla Khan, Mayr, Christian, Kappel, David, Subramoney, Anand
Activity and parameter sparsity are two standard methods of making neural networks computationally more efficient. Event-based architectures such as spiking neural networks (SNNs) naturally exhibit activity sparsity, and many methods exist to sparsif
Externí odkaz:
http://arxiv.org/abs/2405.00433
Autor:
Gonzalez, Hector A., Huang, Jiaxin, Kelber, Florian, Nazeer, Khaleelulla Khan, Langer, Tim, Liu, Chen, Lohrmann, Matthias, Rostami, Amirhossein, Schöne, Mark, Vogginger, Bernhard, Wunderlich, Timo C., Yan, Yexin, Akl, Mahmoud, Mayr, Christian
The joint progress of artificial neural networks (ANNs) and domain specific hardware accelerators such as GPUs and TPUs took over many domains of machine learning research. This development is accompanied by a rapid growth of the required computation
Externí odkaz:
http://arxiv.org/abs/2401.04491
Autor:
Nazeer, Khaleelulla Khan, Schöne, Mark, Mukherji, Rishav, Vogginger, Bernhard, Mayr, Christian, Kappel, David, Subramoney, Anand
As large language models continue to scale in size rapidly, so too does the computational power required to run them. Event-based networks on neuromorphic devices offer a potential way to reduce energy consumption for inference significantly. However
Externí odkaz:
http://arxiv.org/abs/2312.09084
Artificial neural networks open up unprecedented machine learning capabilities at the cost of ever growing computational requirements. Sparsifying the parameters, often achieved through weight pruning, has been identified as a powerful technique to c
Externí odkaz:
http://arxiv.org/abs/2311.07625