Zobrazeno 1 - 10
of 573
pro vyhledávání: '"Nazarov, A. I."'
Autor:
Musina, Roberta, Nazarov, Alexander I.
We continue our investigation of Hardy-type inequalities involving combinations of cylindrical and spherical weights. Compared to [Cora-Musina-Nazarov, Ann. Sc. Norm. Sup., 2024], where the quasi-spherical case was considered, we handle the full rang
Externí odkaz:
http://arxiv.org/abs/2411.08585
We study the stationary Swift--Hohenberg equation $(\Delta + 1)^2 u - \alpha u - \beta u^2 + u^3=0$ in the whole space $\mathbb R^n$, $2\le n \le 7$. We develop and modify the variational approach introduced by Lerman, Naryshkin and Nazarov (2020) an
Externí odkaz:
http://arxiv.org/abs/2404.05066
We study Hardy type inequalities involving mixed cylindrical and spherical weights, for functions supported in cones. These inequalities are related to some singular or degenerate differential operators.
Comment: 17 pages
Comment: 17 pages
Externí odkaz:
http://arxiv.org/abs/2305.05034
We study linear and quasilinear Venttsel initial-boundary value problems for parabolic operators with discontinuous coefficients. On the basis of the a priori estimates obtained, strong solvability in composite Sobolev spaces is proved.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/2211.09232
Autor:
Bakharev, F. L., Nazarov, A. I.
We describe the spectrum structure for the restricted Dirichlet fractional Laplacian in multi-tubes, i.e. domains with cylindrical outlets to infinity. Some new effects in comparison with the local case are discovered. In this version, Theorem 4 is e
Externí odkaz:
http://arxiv.org/abs/2209.08400
Autor:
Musina, Roberta, Nazarov, Alexander I.
We relate non integer powers ${\mathcal L}^{s}$, $s>0$ of a given (unbounded) positive self-adjoint operator $\mathcal L$ in a real separable Hilbert space $\mathcal H$ with a certain differential operator of order $2\lceil{s}\rceil$, acting on even
Externí odkaz:
http://arxiv.org/abs/2208.06873
This survey provides a description of the history and the state of the art of one of the most important fields in the qualitative theory of elliptic partial differential equations including the strong maximum principle, the boundary point principle (
Externí odkaz:
http://arxiv.org/abs/2206.08043
Autor:
Flakina, Alexandra M.1 (AUTHOR) maksimfaraonov@yandex.ru, Nazarov, Dmitry I.1 (AUTHOR), Faraonov, Maxim A.1 (AUTHOR), Yakushev, Ilya A.2 (AUTHOR), Kuzmin, Alexey V.3 (AUTHOR) alexey_kuzmin_91@mail.ru, Khasanov, Salavat S.3 (AUTHOR) khasanov@issp.ac.ru, Zverev, Vladimir N.3 (AUTHOR), Otsuka, Akihiro4 (AUTHOR), Yamochi, Hideki4 (AUTHOR), Kitagawa, Hiroshi4 (AUTHOR), Konarev, Dmitri V.1 (AUTHOR) konarev3@yandex.ru
Publikováno v:
International Journal of Molecular Sciences. Aug2024, Vol. 25 Issue 15, p8068. 12p.
Autor:
Nazarov, A. I., Shcheglova, A. P.
We study bounded solutions to the fractional equation $(-\Delta)^s u + u - |u|^{q-2}u = 0$ in $\mathbb R^n$ for $n\ge2$ and subcritical exponent $q>2$. Applying the variational approach based on concentration arguments and symmetry considerations whi
Externí odkaz:
http://arxiv.org/abs/2111.07301
Autor:
Musina, Roberta, Nazarov, Alexander I.
Publikováno v:
In Journal of Functional Analysis 15 July 2024 287(2)