Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Nazar Arakelian"'
Autor:
Nazar Arakelian
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 52:135-148
Let $$\mathcal X$$ be a non-degenerate projective algebraic curve and denote by $$\mathcal X^{'}$$ its strict dual curve. The map $$\gamma :\mathcal X\longrightarrow \mathcal X^{'}$$ is called (strict) Gauss map of $$\mathcal X$$ . In this manuscript
Autor:
Nazar Arakelian, Pietro Speziali
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let $${\mathcal {X}}$$ be a (projective, algebraic, non-singular, absolutely irreducible) curve of genus g defined over an algebraically closed field K of characteristic $$p \ge 0$$ , and let q be a prime dividing the cardinality of $$\text{ Aut }({\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::335bfa5a561b6bdd0cf786845d92bba9
Autor:
Nazar Arakelian
Publikováno v:
Finite Fields and Their Applications. 48:87-102
Let F be a plane singular curve defined over a finite field F q . Via results of [11] and [1] , the linear system of plane curves of a given degree passing through the singularities of F provides potentially good bounds for the number of points on a
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For any smooth Hurwitz curve H n : X Y n + Y Z n + X n Z = 0 over the finite field F p , an explicit description of its Weierstrass points for the morphism of lines is presented. As a consequence, bounds on the number of rational points of H n are ob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f4fe054f759bacca7cf204ac8855d67
Autor:
Nazar Arakelian, Gábor Korchmáros
Publikováno v:
Journal of Number Theory. 154:278-291
Let M be the Artin–Mumford curve over the finite prime field F p with p > 2 . By a result of Valentini and Madan, Aut F p ( M ) ≅ H with H = ( C p × C p ) ⋊ D p − 1 . We prove that if X is an algebraic curve of genus g = ( p − 1 ) 2 define
Autor:
Herivelto Borges, Nazar Arakelian
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For Fermat curves F: aX n + bY n = Z n defined over F q , we establish necessary and sufficient conditions for F to be F q -Frobenius nonclassical with respect to the linear system of plane cubics. In the new F q -Frobenius nonclassical cases, we det
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c269939104e091defc42097777a4ca8
Autor:
Pietro Speziali, Nazar Arakelian
Let $\mathcal{X}$ be an irreducible algebraic curve defined over a finite field $\mathbb{F}_q$ of characteristic $p>2$. Assume that the $\mathbb{F}_q$-automorphism group of $\mathcal{X}$ admits as an automorphism group the direct product of two cycli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e723eeb7b83bf574fd98c7430618a60
http://arxiv.org/abs/1608.04338
http://arxiv.org/abs/1608.04338
Autor:
Herivelto Borges, Nazar Arakelian
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let $$\mathcal{X}$$ be a projective irreducible nonsingular algebraic curve defined over a finite field $$\mathbb{F}_q$$ . This paper presents a variation of the Stohr–Voloch theory and sets new bounds to the number of $${F_{{q^r}}}$$ -rational poi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fac1fefc43ad25eb006d99f9fceda57c
Motivated by previous computations in Garcia, Stichtenoth and Xing (2000) paper [ 11 ], we discuss the spectrum \begin{document}$\mathbf{M}(q^2)$\end{document} for the genera of maximal curves over finite fields of order \begin{document}$q^2$\end{doc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b70552ef8839351e9e46bf78c3d2e2eb
Autor:
Herivelto Borges, Nazar Arakelian
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For each integer $s\geq 1$, we present a family of curves that are $\mathbb{F}_q$-Frobenius nonclassical with respect to the linear system of plane curves of degree s. In the case $s = 2$, we give necessary and sufficient conditions for such curves t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eddc0ec57db6ae1b690b169c345260d6