Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Nayek, Arpita"'
Autor:
Kannan, S. Senthamarai, Nayek, Arpita
Let $r$ and $q$ be positive integers and $n=qr+1.$ Let $G = SL(n, \mathbb{C})$ and $T$ be a maximal torus of $G.$ Let $P^{\alpha_r}$ be the maximal parabolic subgroup of $G$ corresponding to the simple root $\alpha_r.$ Let $\omega_r$ be the fundament
Externí odkaz:
http://arxiv.org/abs/2310.11091
For $1\le r\le n-1,$ let $G_{r,n}$ denote the Grassmannian parametrizing $r$-dimensional subspaces of $\mathbb{C}^{n}.$ Let $(r,n)=1.$ In this article we show that the GIT quotients of certain Richardson varieties in $G_{r,n}$ for the action of a max
Externí odkaz:
http://arxiv.org/abs/2306.15323
Publikováno v:
New York J. Math. 30 (2024) 998-1023
Let $G$ be a connected semisimple algebraic group of adjoint type over the field $\mathbb{C}$ of complex numbers and $B$ be a Borel subgroup of $G.$ Let $F$ be an irreducible projective $B$-variety. Then consider the variety $E:=G\times^{B}F,$ which
Externí odkaz:
http://arxiv.org/abs/2302.09960
Autor:
Nayek, Arpita, Saha, Pinakinath
Let $G=SO(8n+4,\mathbb{C})$ ($n\ge 1$). Let $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ Let $P (\supset B)$ denote the maximal parabolic subgroup of $G$ corresponding to the simple root $\alpha_{4n+2}$. In this article, we p
Externí odkaz:
http://arxiv.org/abs/2302.00555
Autor:
Nayek, Arpita, Saha, Pinakinath
Let $G=Spin(8n, \mathbb{C})(n\ge 1)$ and $T_{G}$ be a maximal torus of $G.$ Let $P^{\alpha_{4n}}(\supset T_{G})$ be the maximal parabolic subgroup of $G$ corresponding to the simple root $\alpha_{4n}.$ Let $X$ be a Schubert variety in $G/P^{\alpha_{4
Externí odkaz:
http://arxiv.org/abs/2207.01477
Autor:
Nayek, Arpita, Saha, Pinakinath
Publikováno v:
C. R. Math. Acad. Sci. Paris 361 (2023) 1499-1509
Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}.$ The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1).$ Let $T$ be a maximal torus of $SL(2n,\mathbb{C})$ which
Externí odkaz:
http://arxiv.org/abs/2111.00802
Autor:
Nayek, Arpita, Saha, Pinakinath
Publikováno v:
Comptes Rendus. Mathématique, Vol 361, Iss G9, Pp 1499-1509 (2023)
Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C}
Externí odkaz:
https://doaj.org/article/50f56942386e4d6a84241c81adc1092e
Publikováno v:
Indian Journal of Pure and Applied Mathematics (2021)
Let $G=SL(n, \mathbb{C}),$ and $T$ be a maximal torus of $G,$ where $n$ is a positive even integer. In this article, we study the GIT quotients of the Schubert varieties in the Grassmannian $G_{2,n}.$ We prove that the GIT quotients of the Richardson
Externí odkaz:
http://arxiv.org/abs/2103.12621
Let $G=SL_n(\mathbb C)$ and $T$ be a maximal torus in $G$. We show that the quotient $T \backslash \backslash G/{P_{\alpha_1}\cap P_{\alpha_2}}$ is projectively normal with respect to the descent of a suitable line bundle, where $P_{\alpha_i}$ is the
Externí odkaz:
http://arxiv.org/abs/1906.09759
For any simple, simply connected algebraic group $G$ of type $B,C$ and $D$ and for any maximal parabolic subgroup $P$ of $G$, we provide a criterion for a Richardson variety in $G/P$ to admit semistable points for the action of a maximal torus $T$ wi
Externí odkaz:
http://arxiv.org/abs/1902.04353