Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Nayatani, Shin"'
Autor:
Gomyou, Takumi, Nayatani, Shin
Given a length function on the set of edges of a finite graph, the corresponding Fujiwara Laplacian is defined. We consider a problem of maximizing the first nonzero eigenvalue of this graph Laplacian over all choices of edge-length function subject
Externí odkaz:
http://arxiv.org/abs/2412.02179
We introduce a new optimization problem regarding embeddings of a graph into a Euclidean space and discuss its relation to the two, mutually dual, optimizations problems introduced by Goering-Helmberg-Wappler. We prove that the Laplace eigenvalue max
Externí odkaz:
http://arxiv.org/abs/2002.03584
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nayatani, Shin
Gromov showed that for fixed, arbitrarily large C, any uniformly C-Lipschitz affine action of a random group in his graph model on a Hilbert space has a fixed point. We announce a theorem stating that more general affine actions of the same random gr
Externí odkaz:
http://arxiv.org/abs/1705.02644
Autor:
Nayatani, Shin, Shoda, Toshihiro
In this paper, we settle in the affirmative the Jakobson-Levitin-Nadirashvili-Nigam-Polterovich conjecture, stating that a certain singular metric on the Bolza surface, with area normalized, should maximize the first eigenvalue of the Laplacian.
Externí odkaz:
http://arxiv.org/abs/1704.06384
Autor:
Kamada, Hiroyuki, Nayatani, Shin
Modelled on a real hypersurface in a quaternionic manifold, we introduce a quaternionic analogue of CR structure, called quaternionic CR structure. We define the strong pseudoconvexity of this structure as well as the notion of quaternionic pseudoher
Externí odkaz:
http://arxiv.org/abs/1302.3659
Autor:
Nayatani, Shin, Shoda, Toshihiro
Publikováno v:
In Comptes rendus - Mathématique January 2019 357(1):84-98
We prove that a random group of the graph model associated with a sequence of expanders has fixed-point property for a certain class of CAT(0) spaces. We use Gromov's criterion for fixed-point property in terms of the growth of n-step energy of equiv
Externí odkaz:
http://arxiv.org/abs/1210.5829
Autor:
Izeki, Hiroyasu, Nayatani, Shin
We use the combinatorial harmonic map theory to study the isometric actions of discrete groups on Hadamard spaces. Given a finitely generated group acting by automorphisms, properly discontinuously and cofinitely on a simplicial complex and its isome
Externí odkaz:
http://arxiv.org/abs/math/0410019
We prove that the connected sums CP_2 # CP_2 and CP_2 # CP_2 # CP_2 admit self-dual metrics with positive Ricci curvature. Moreover, every self-dual metric of positive scalar curvature on CP_2 # CP_2 is conformal to a metric with positive Ricci curva
Externí odkaz:
http://arxiv.org/abs/dg-ga/9411001