Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Nayak, Suresh"'
Publikováno v:
In AAMAS (pp. 1514-1523) 2023
The ability to shop independently, especially in grocery stores, is important for maintaining a high quality of life. This can be particularly challenging for people with visual impairments (PVI). Stores carry thousands of products, with approximatel
Externí odkaz:
http://arxiv.org/abs/2405.20501
Autor:
Nayak, Suresh, Sastry, Pramathanath
For a proper map $f\colon X\to Y$ of noetherian ordinary schemes, one has a well-known natural transformation, ${\bf L}^*f^*(-)\overset{\bf L}{\otimes} f^!{\mathcal{O}}_Y\to f^!$, obtained via the projection formula, which extends, using Nagata's com
Externí odkaz:
http://arxiv.org/abs/1903.01779
Autor:
Nayak, Suresh, Sastry, Pramathanath
For a smooth map between noetherian schemes, Verdier relates the top relative differentials of the map with the twisted inverse image functor `upper shriek'. We show that the associated traces for smooth proper maps can be rendered concrete by showin
Externí odkaz:
http://arxiv.org/abs/1903.01783
We study functors underlying derived Hochschild cohomology, also called Shukla cohomology, of a commutative algebra S essentially of finite type and of finite flat dimension over a commutative noetherian ring K. We construct a complex of S-modules D,
Externí odkaz:
http://arxiv.org/abs/0904.4004
Autor:
Nayak, Suresh
We show that any separated essentially finite-type map $f$ of noetherian schemes globally factors as $f = hi$ where $i$ is an injective localization map and $h$ a separated finite-type map. In particular, via Nagata's compactification theorem, $h$ ca
Externí odkaz:
http://arxiv.org/abs/0809.1201
Autor:
Nayak, Suresh, Sastry, Pramathanath
We use the anti-equivalence between Cohen-Macaulay complexes and coherent sheaves on formal schemes to shed light on some older results and prove new results. We bring out the relations between a coherent sheaf M satisfying an S_2 condition and the l
Externí odkaz:
http://arxiv.org/abs/math/0512105
Autor:
Nayak, Suresh
We give an abstract criterion for pasting pseudofunctors on two subcategories of a category into a pseudofunctor on the whole category. As an application we extend the variance theory of the twisted inverse image $(-)^!$ over schemes to that over for
Externí odkaz:
http://arxiv.org/abs/math/0406501
Publikováno v:
Contemporary Math. 375 (2005), 3-133
On a suitable category of formal schemes equipped with codimension functions we construct a canonical pseudofunctor (-)^# taking values in the corresponding categories of Cousin complexes. Cousin complexes on such a formal scheme X functorially repre
Externí odkaz:
http://arxiv.org/abs/math/0310032
Autor:
Rane, Rajesh A., Nandave, Mukesh, Nayak, Suresh, Naik, Anushri, Shah, Dhwani, Alwan, Wesam S., Sahu, Niteshkumar U., Naphade, Shital S., Palkar, Mahesh B., Karunanidhi, Sivanandhan, Thapliyal, Neeta, Karpoormath, Rajshekhar
Publikováno v:
In Arabian Journal of Chemistry May 2017 10(4):458-464
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.