Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Nayak, Saudamini"'
In this paper, we define partially capable Lie superalgebra. As an application we classify all capable nilpotent Lie superalgebras of dimension less than equal to five.
Comment: arXiv admin note: text overlap with arXiv:2210.00254, arXiv:2303.15
Comment: arXiv admin note: text overlap with arXiv:2210.00254, arXiv:2303.15
Externí odkaz:
http://arxiv.org/abs/2308.10551
Autor:
Nayak, Saudamini
We define global and local Weyl modules for $q \otimes A$, where $q$ is the queer Lie superalgebra and $A$ is an associative commutative unital $\mathbb{C}-$algebra. We prove that global Weyl modules are universal highest weight objects in certain ca
Externí odkaz:
http://arxiv.org/abs/2302.14787
Isoclinism of Lie superalgebras has been defined and studied currently. In this article it is shown that for finite dimensional Lie superalgebras of same dimension, the notation of isoclinism and isomorphism are equivalent. Furthermore we show that c
Externí odkaz:
http://arxiv.org/abs/1811.11964
Autor:
Nayak, Saudamini
Publikováno v:
J. Lie Theory, 31, 439-458, 2021
Let $L$ be a nilpotent Lie superalgebra of dimension $(m\mid n)$ and $s(L) = \frac{1}{2}[(m + n - 1)(m + n -2)]+ n+ 1 - \dim \mathcal{M}(L)$, where $\mathcal{M}(L)$ denotes the Schur multiplier of $L$. Here $s(L)\geq 0$ and the structure of all non-a
Externí odkaz:
http://arxiv.org/abs/1810.09129
In this article we show that distributive law holds for non-abelian tensor product of Lie superalgebras under certain direct sums. There by we obtain a rule for non-abelian exterior square of a Lie superalgebra. We define capable Lie superalgebra and
Externí odkaz:
http://arxiv.org/abs/1810.04459
Autor:
Nayak, Saudamini
Publikováno v:
Publ. Math. Debrecen, 102, 219-236, 2023
In this paper we define isoclinism for Lie superalgebras and using the concept of isoclinism, we give the structure of all covers of Lie superalgebras when their Schur multipliers are finite dimensional. It has been shown that that maximal stem exten
Externí odkaz:
http://arxiv.org/abs/1804.10434
Autor:
Nayak, Saudamini
In this paper, first we prove that all finite dimensional special Heisenberg Lie superalgebras with even center have same dimension, say $(2m+1\mid n)$ for some non-negative integers $m,n$ and are isomorphism with them. Further, for a nilpotent Lie s
Externí odkaz:
http://arxiv.org/abs/1801.03798
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we have computed all the affine Kac-Moody symmetric spaces which are tame Frechet manifolds starting from the Vogan diagrams related to the affine untwisted Kac-Moody algebras. The detail computation of affine Kac-Moody symmetric spaces
Externí odkaz:
http://arxiv.org/abs/1312.3784
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.