Zobrazeno 1 - 10
of 303
pro vyhledávání: '"Navarrete, Juan P."'
In this paper, we give a classification of the subgroups of $\textrm{PSL}(3, \mathbb{C})$ that act on $\mathbb{P}_{\mathbb{C}}^2$ in such a way that their Kulkarni limit set has finitely many lines in general position lines. These are the elementary
Externí odkaz:
http://arxiv.org/abs/2307.03834
Publikováno v:
Acta Mathematica Hungarica 172, 170-186, (2024)
In this manuscript, we study the arrangements of the roots in the complex plane for the lacunary harmonic polynomials called harmonic trinomials. We provide necessary and sufficient conditions so that two general harmonic trinomials have the same set
Externí odkaz:
http://arxiv.org/abs/2307.01720
Publikováno v:
Journal of Dynamics and Differential Equations 2023
In this paper, we characterize the stability region for trinomials of the form $f(\zeta):=a\zeta ^n + b\zeta ^m +c$, $\zeta\in \mathbb{C}$, where $a$, $b$ and $c$ are non-zero complex numbers and $n,m\in \mathbb{N}$ with $n>m$. More precisely, we pro
Externí odkaz:
http://arxiv.org/abs/2304.09147
It is shown that if a regular knot of class C2 is embedded in the boundary of the complex hyperbolic plane as the limit set of a discrete subgroup of PU(2, 1) then it is either a chain or an R-circle.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/2203.10572
Publikováno v:
Journal of Mathematical Analysis and Applications 2022, Volume 514, Number 2, 126313
In this manuscript we study the counting problem for harmonic trinomials of the form $a\zeta^n+b\overline{\zeta}^m+c$, where $n,m\in \mathbb{N}$, $n>m$, and $a$, $b$ and $c$ are non-zero complex numbers. As a consequence, we obtain the Fundamental Th
Externí odkaz:
http://arxiv.org/abs/2112.06703
Autor:
Molinet, Jennifer1,2,3 (AUTHOR) jennifer.molinet@usach.cl, Navarrete, Juan P.1 (AUTHOR), Villarroel, Carlos A.1,4 (AUTHOR), Villarreal, Pablo1,2 (AUTHOR), Sandoval, Felipe I.1 (AUTHOR), Nespolo, Roberto F.1,5,6,7 (AUTHOR), Stelkens, Rike3 (AUTHOR), Cubillos, Francisco A.1,2,5 (AUTHOR) jennifer.molinet@usach.cl
Publikováno v:
PLoS Genetics. 6/20/2024, Vol. 20 Issue 6, p1-27. 27p.
It is shown that lattices of a family of split solvable subgroups of PSL(N + 1, C) are complex Kleinian using techniques of Lie groups and dynamical systems, also that there exists a minimal limit set for the action of these lattices on the N dimensi
Externí odkaz:
http://arxiv.org/abs/2111.13211
We give a topological description of the quotient space $\Omega(G)/G$ in the case $G \subset PSL(3, \mathbb{C})$ is a discrete subgroup acting on $\mathbb{P}^2_\mathbb{C}$ and the maximum number of complex projective lines in general position contain
Externí odkaz:
http://arxiv.org/abs/1903.03021
We study and classify the purely parabolic discrete subgroups of $PSL(3,\Bbb{C})$. This includes all discrete subgroups of the Heisenberg group ${\rm Heis}(3,\Bbb{C})$. While for $PSL(2,\Bbb{C})$ every purely parabolic subgroup is Abelian and acts on
Externí odkaz:
http://arxiv.org/abs/1802.08360
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.