Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Navarrete, Alvaro"'
Publikováno v:
Quantum Sci. Technol. 9, 035044 (2024)
Recent results have shown that the secret-key rate of coherent-one-way (COW) quantum key distribution (QKD) scales quadratically with the system's transmittance, thus rendering this protocol unsuitable for long-distance transmission. This was proven
Externí odkaz:
http://arxiv.org/abs/2406.13760
The problem of implementation security in quantum key distribution (QKD) refers to the difficulty of meeting the requirements of mathematical security proofs in real-life QKD systems. Here, we provide a succint review on this topic, focusing on discr
Externí odkaz:
http://arxiv.org/abs/2310.20377
Autor:
Pereira, Margarida, Currás-Lorenzo, Guillermo, Navarrete, Álvaro, Mizutani, Akihiro, Kato, Go, Curty, Marcos, Tamaki, Kiyoshi
Publikováno v:
Phys. Rev. Research 5, 023065 (2023)
The Bennett-Brassard 1984 (BB84) protocol is the most widely implemented quantum key distribution (QKD) scheme. However, despite enormous theoretical and experimental efforts in the past decades, the security of this protocol with imperfect sources h
Externí odkaz:
http://arxiv.org/abs/2210.11754
Autor:
Navarrete, Álvaro, Curty, Marcos
Publikováno v:
Quantum Science and Technology 7, 035021 (2022)
Most security proofs of quantum key distribution (QKD) disregard the effect of information leakage from the users' devices, and, thus, do not protect against Trojan-horse attacks (THAs). In a THA, the eavesdropper injects strong light into the QKD ap
Externí odkaz:
http://arxiv.org/abs/2202.06630
Publikováno v:
Quantum 5, 602 (2021)
The decoy-state method in quantum key distribution (QKD) is a popular technique to approximately achieve the performance of ideal single-photon sources by means of simpler and practical laser sources. In high-speed decoy-state QKD systems, however, i
Externí odkaz:
http://arxiv.org/abs/2105.11165
Publikováno v:
Phys. Rev. A 104, 012406 (2021)
The core of security proofs of quantum key distribution (QKD) is the estimation of a parameter that determines the amount of privacy amplification that the users need to apply in order to distill a secret key. To estimate this parameter using the obs
Externí odkaz:
http://arxiv.org/abs/2101.12603
Publikováno v:
Phys. Rev. Applied 15, 034072 (2021)
There is a big gap between theory and practice in quantum key distribution (QKD) because real devices do not satisfy the assumptions required by the security proofs. Here, we close this gap by introducing a simple and practical measurement-device-ind
Externí odkaz:
http://arxiv.org/abs/2007.03364
Autor:
Currás-Lorenzo, Guillermo, Navarrete, Alvaro, Azuma, Koji, Kato, Go, Curty, Marcos, Razavi, Mohsen
Publikováno v:
npj Quantum Information 7, 22 (2021)
Quantum key distribution (QKD) offers a reliable solution to communication problems that require long-term data security. For its widespread use, however, the rate and reach of QKD systems must be improved. Twin-field (TF) QKD is a step forward towar
Externí odkaz:
http://arxiv.org/abs/1910.11407
Publikováno v:
New J. Phys. 21 113032 (2019)
Twin-Field (TF) quantum key distribution (QKD) is a major candidate to be the new benchmark for far-distance QKD implementations, since its secret key rate can overcome the repeaterless bound by means of a simple interferometric measurement. Many var
Externí odkaz:
http://arxiv.org/abs/1907.05256
Autor:
Huang, Anqi, Navarrete, Álvaro, Sun, Shi-Hai, Chaiwongkhot, Poompong, Curty, Marcos, Makarov, Vadim
Publikováno v:
Phys. Rev. Applied 12, 064043 (2019)
Quantum key distribution (QKD) based on the laws of quantum physics allows the secure distribution of secret keys over an insecure channel. Unfortunately, imperfect implementations of QKD compromise its information-theoretical security. Measurement-d
Externí odkaz:
http://arxiv.org/abs/1902.09792