Zobrazeno 1 - 10
of 967
pro vyhledávání: '"Navarini Alexander"'
Autor:
Grava Aikaterina, Hamidi Arsham, Gonzalez-Jimenez Alvaro, Bayhaqi Yakub A., Navarini Alexander A., Cattin Philippe C., Canbaz Ferda
Publikováno v:
EPJ Web of Conferences, Vol 287, p 09029 (2023)
Feedback systems have been utilized to reduce the possible thermal side effects of lasers for surgery by means of temperature monitoring to control irrigation systems. In this study, we investigated the potential application of optical coherence tomo
Externí odkaz:
https://doaj.org/article/661824b27fdc48b7a886def3389d20a6
Autor:
Gonzalez-Jimenez, Alvaro, Lionetti, Simone, Bazazian, Dena, Gottfrois, Philippe, Gröger, Fabian, Pouly, Marc, Navarini, Alexander
Out-Of-Distribution (OOD) detection is critical to deploy deep learning models in safety-critical applications. However, the inherent hierarchical concept structure of visual data, which is instrumental to OOD detection, is often poorly captured by c
Externí odkaz:
http://arxiv.org/abs/2403.15260
Autor:
Gröger, Fabian, Lionetti, Simone, Gottfrois, Philippe, Gonzalez-Jimenez, Alvaro, Groh, Matthew, Daneshjou, Roxana, Consortium, Labelling, Navarini, Alexander A., Pouly, Marc
Publikováno v:
Proceedings of the 3rd Machine Learning for Health Symposium, PMLR 225:101-128, 2023
Benchmark datasets for digital dermatology unwittingly contain inaccuracies that reduce trust in model performance estimates. We propose a resource-efficient data-cleaning protocol to identify issues that escaped previous curation. The protocol lever
Externí odkaz:
http://arxiv.org/abs/2309.06961
Autor:
Gonzalez-Jimenez, Alvaro, Lionetti, Simone, Gottfrois, Philippe, Gröger, Fabian, Pouly, Marc, Navarini, Alexander
This paper presents a new robust loss function, the T-Loss, for medical image segmentation. The proposed loss is based on the negative log-likelihood of the Student-t distribution and can effectively handle outliers in the data by controlling its sen
Externí odkaz:
http://arxiv.org/abs/2306.00753
Autor:
Gröger, Fabian, Lionetti, Simone, Gottfrois, Philippe, Gonzalez-Jimenez, Alvaro, Amruthalingam, Ludovic, Consortium, Labelling, Groh, Matthew, Navarini, Alexander A., Pouly, Marc
Most benchmark datasets for computer vision contain irrelevant images, near duplicates, and label errors. Consequently, model performance on these benchmarks may not be an accurate estimate of generalization capabilities. This is a particularly acute
Externí odkaz:
http://arxiv.org/abs/2305.17048
Publikováno v:
In Journal of the American Academy of Dermatology October 2024 91(4):699-705
Autor:
Winkler, Julia K., Kommoss, Katharina S., Toberer, Ferdinand, Enk, Alexander, Maul, Lara V., Navarini, Alexander A., Hudson, Jeremy, Salerni, Gabriel, Rosenberger, Albert, Haenssle, Holger A.
Publikováno v:
In European Journal of Cancer May 2024 202
Autor:
Gössinger, Elisabeth, Dodiuk-Gad, Roni, Mühleisen, Beda, Oon, Hazel H., Oh, Choon Chiat, Maul, Julia-Tatjana, Navarini, Alexander A.
Publikováno v:
In Dermatologic Clinics April 2024 42(2):317-328
Publikováno v:
In Learning and Instruction December 2023 88
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.