Zobrazeno 1 - 10
of 1 493
pro vyhledávání: '"Natarajan Pradeep"'
Autor:
Pal, Anwesan, Wadhwa, Sahil, Jaiswal, Ayush, Zhang, Xu, Wu, Yue, Chada, Rakesh, Natarajan, Pradeep, Christensen, Henrik I.
Multi-turn textual feedback-based fashion image retrieval focuses on a real-world setting, where users can iteratively provide information to refine retrieval results until they find an item that fits all their requirements. In this work, we present
Externí odkaz:
http://arxiv.org/abs/2308.10170
We propose a self-supervised shared encoder model that achieves strong results on several visual, language and multimodal benchmarks while being data, memory and run-time efficient. We make three key contributions. First, in contrast to most existing
Externí odkaz:
http://arxiv.org/abs/2304.05523
Autor:
FitzGerald, Jack, Ananthakrishnan, Shankar, Arkoudas, Konstantine, Bernardi, Davide, Bhagia, Abhishek, Bovi, Claudio Delli, Cao, Jin, Chada, Rakesh, Chauhan, Amit, Chen, Luoxin, Dwarakanath, Anurag, Dwivedi, Satyam, Gojayev, Turan, Gopalakrishnan, Karthik, Gueudre, Thomas, Hakkani-Tur, Dilek, Hamza, Wael, Hueser, Jonathan, Jose, Kevin Martin, Khan, Haidar, Liu, Beiye, Lu, Jianhua, Manzotti, Alessandro, Natarajan, Pradeep, Owczarzak, Karolina, Oz, Gokmen, Palumbo, Enrico, Peris, Charith, Prakash, Chandana Satya, Rawls, Stephen, Rosenbaum, Andy, Shenoy, Anjali, Soltan, Saleh, Sridhar, Mukund Harakere, Tan, Liz, Triefenbach, Fabian, Wei, Pan, Yu, Haiyang, Zheng, Shuai, Tur, Gokhan, Natarajan, Prem
Publikováno v:
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '22), August 14-18, 2022, Washington, DC, USA
We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9.3B, their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the N
Externí odkaz:
http://arxiv.org/abs/2206.07808
Autor:
Adebamowo, Sally, Adebamowo, Clement, Allred, Nicholette, Auer, Paul, Below, Jennifer, Boua, Palwende Romuald, Boulier, Kristin, Bowers, Michael, Breeyear, Joseph, Chatterjee, Nilanjan, Chikowore, Tinashe, Choi, Jaewon, Choudhury, Ananyo, Conomos, Matthew, Conti, David, Cox, Nancy, Cullina, Sinead, Darst, Burcu, Deutsch, Aaron, Ding, Yi, Edwards, Todd, Eskin, Eleazar, Fatumo, Segun, Florez, Jose, Freimer, Nelson, Fullerton, Stephanie, Ge, Tian, Geschwind, Daniel, Gignoux, Chris, Gogarten, Stephanie, Goodarzi, Mark, Guo, Xiuqing, Haiman, Christopher, Hanchard, Neil, Hazelhurst, Scott, Heavner, Ben, Heckbert, Susan, Hirbo, Jibril, Hornsby, Whitney, Hou, Kangcheng, Huang, Qinqin, Huerta, Alicia, Jiang, Guoqian, Johnston, Katherine, Kachuri, Linda, Kadowaki, Takashi, Kamiza, Abram Bunya, Kenny, Eimear, Kerns, Sarah, Khan, Alyna, Kim, Joohyun, Konigsberg, Iain, Kooperberg, Charles, Kosel, Matt, Kraft, Peter, Kullo, Iftikhar, Kwak, Soo-Heon, Lange, Leslie, Lange, Ethan, Le Marchand, Loic, Lee, Hyunsuk, Leong, Aaron, Li, Yun, Lin, Meng, Lohmueller, Kirk, Loos, Ruth, Lu, Kevin, Mandia, Ravi, Manning, Alisa, Martin, Alicia, Martin, Iman, Martin, Hilary, Mathias, Rasika, Meigs, James, Mercader, Josep, Mester, Rachel, Meyer, Mariah, Miller-Fleming, Tyne, Mitchell, Braxton, Mulder, Nicola, Na, Jie, Natarajan, Pradeep, Nelson, Sarah, Ng, Maggie, Norland, Kristjan, Loohuis, Loes Olde, Onengut-Gumuscu, Suna, Oneyobi, Ebuka, Ophoff, Roel, Pajukanta, Paivi, Pasaniuc, Bogdan, Patel, Aniruddh, Peters, Ulrike, Phuong, Jimmy, Preuss, Michael, Psaty, Bruce, Raffield, Laura, Ramsay, Michele, Reiner, Alexander, Rice, Kenneth, Rich, Stephen, Rotter, Jerome, Rowan, Bryce, Rowley, Robb, Ruan, Yunfeng, Sakoda, Lori, Sankararaman, Siram, Schaid, Dan, Schrider, Dan, Schroeder, Philip, Shemirani, Ruhoilah, Shortt, Jonathan, Shuey, Megan, Sim, Xueling, Smit, Roelof A.J., Smith, Johanna, Sobrin, Lucia, Stalbow, Lauren, Stilp, Adrienne, Stram, Daniel, Suzuki, Ken, Szczerbinski, Lukasz, Tao, Ran, Tayo, Bamidele, Thornton, Timothy, Truong, Buu, Tusie, Teresa, Udler, Miriam, van Heel, David, Vargas, Luciana B., Venkateswaran, Vidhya, Wang, Ying, Wessel, Jennifer, Wiley, Laura, Wilkens, Lynne, Wilson, Riley, Witte, John, Wojcik, Genevieve, Wong, Quenna, Yamauchi, Toshimasa, Yanek, Lisa, Yu, Yue, Zhang, Haoyu, Zhang, Yuji, Zhong, Michael, Kullo, Iftikhar J., Conomos, Matthew P., Nelson, Sarah C., Adebamowo, Sally N., Fullerton, Stephanie M., Gogarten, Stephanie M., Hornsby, Whitney E., Kenny, Eimear E., Khera, Amit V., Mercader, Josep M., Raffield, Laura M., Reiner, Alex, Schaid, Daniel, Wiley, Ken, Witte, John S.
Publikováno v:
In The American Journal of Human Genetics 5 December 2024 111(12):2594-2606
Autor:
Alebna, Pamela L., Han, Chin Yip, Ambrosio, Mathew, Kong, Gwyneth, Cyrus, John W., Harley, Kayla, Kang, Le, Small, Aeron M., Chevli, Parag, Bhatia, Harpreet, Chew, Nicholas, Salloum, Fadi N., Dixon, Dave L., Abbate, Antonio, Natarajan, Pradeep, Shapiro, Michael D., Mehta, Anurag
Publikováno v:
In JACC: Advances December 2024 3(12) Part 1
Autor:
Nurmohamed, Nick S., Shim, Injeong, Gaillard, Emilie L., Ibrahim, Shirin, Bom, Michiel J., Earls, James P., Min, James K., Planken, R. Nils, Choi, Andrew D., Natarajan, Pradeep, Stroes, Erik S.G., Knaapen, Paul, Reeskamp, Laurens F., Fahed, Akl C.
Publikováno v:
In JACC: Cardiovascular Imaging December 2024 17(12):1445-1459
Autor:
Zon, Rebecca L., Sekar, Aswin, Clapham, Katharine, Oren, Ohad, Niroula, Abhishek, Bick, Alexander G., Gibson, Christopher J., Griffin, Gabriel, Uddin, Md Mesbah, Neuberg, Donna, Natarajan, Pradeep, Ebert, Benjamin L.
Publikováno v:
In Blood 14 November 2024 144(20):2149-2154
Autor:
Vassy, Jason L., Brunette, Charles A., Yi, Thomas, Harrison, Alicia, Cardellino, Mark P., Assimes, Themistocles L., Christensen, Kurt D., Devineni, Poornima, Gaziano, J. Michael, Gong, Xin, Hui, Qin, Knowles, Joshua W., Muralidhar, Sumitra, Natarajan, Pradeep, Pyarajan, Saiju, Sears, Mary Gavin, Shi, Yunling, Sturm, Amy C., Whitbourne, Stacey B., Sun, Yan V., Danowski, Morgan E.
Publikováno v:
In American Heart Journal October 2024 276:99-109
Autor:
Chada, Rakesh, Natarajan, Pradeep
The task of learning from only a few examples (called a few-shot setting) is of key importance and relevance to a real-world setting. For question answering (QA), the current state-of-the-art pre-trained models typically need fine-tuning on tens of t
Externí odkaz:
http://arxiv.org/abs/2109.01951
Large-scale conversational assistants like Alexa, Siri, Cortana and Google Assistant process every utterance using multiple models for domain, intent and named entity recognition. Given the decoupled nature of model development and large traffic volu
Externí odkaz:
http://arxiv.org/abs/2109.01754