Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Natanzon, Sergei M."'
We explain how Gaussian integrals over ensemble of complex matrices with source matrices generate Hurwitz numbers of the most general type, namely, Hurwitz numbers with arbitrary orientable or non-orientable base surface and arbitrary profiles at bra
Externí odkaz:
http://arxiv.org/abs/2002.00466
Autor:
Costa, Antonio F., Natanzon, Sergei M.
Let $\widetilde{S}$ be a closed (compact without boundary) oriented surface with genus $g$, and $G$ be a group isomorphic to $% \mathbf{Z}_{p}^{m}$, where $p$ is a prime integer. An action of $G$ on $S$ is a pair $(\widetilde{S},f)$, where $f$ is a r
Externí odkaz:
http://arxiv.org/abs/math/0011249