Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Nataliia Goloshchapova"'
Autor:
Nataliia Goloshchapova
Publikováno v:
Journal of Differential Equations. 310:1-44
Autor:
Nataliia Goloshchapova
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study local well-posedness and orbital stability/instability of standing waves for a first order system associated with a nonlinear Klein-Gordon equation on a star graph. The proof of the well-posedness uses a classical fixed point argument and th
Autor:
Liliana Cely, Nataliia Goloshchapova
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3eacabc61940769d8d7442b5842c7f30
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study the nonlinear Schrodinger equation with an arbitrary real potential $$V(x)\in (L^1+L^\infty )(\Gamma )$$ on a star graph $$\Gamma $$ . At the vertex an interaction occurs described by the generalized Kirchhoff condition with strength $$-\gam
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00e5b500624f35513bba513b3cb2a11b
http://arxiv.org/abs/2102.12001
http://arxiv.org/abs/2102.12001
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 38:5039-5066
We study the nonlinear Schrodinger equation (NLS) on a star graph \begin{document}$\mathcal{G}$\end{document} . At the vertex an interaction occurs described by a boundary condition of delta type with strength \begin{document}$\alpha\in \mathbb{R}$\e
Autor:
Nataliia Goloshchapova, Masahito Ohta
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study strong instability (by blow-up) of the standing waves for the nonlinear Schr\"odinger equation with $\delta$-interaction on a star graph $\Gamma$. The key ingredient is a novel variational technique applied to the standing wave solutions bei
Publikováno v:
Physica D: Nonlinear Phenomena. 403:132332
We study the orbital stability of standing waves with discontinuous bump-like profile for the nonlinear Schrodinger model with the repulsive δ ′ -interaction on the line. We consider the model with power non-linearity. In particular, it is shown t
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 24
We study analytically the orbital stability of the standing waves with a peak-Gausson profile for a nonlinear logarithmic Schr\"odinger equation with $\delta$-interaction (attractive and repulsive). A major difficulty is to compute the number of nega
Publikováno v:
Mathematische Nachrichten. 285:1839-1859
We complete the classical Schoenberg representation theorem for radial positive definite functions. We apply this result to study spectral properties of self-adjoint realizations of two- and three-dimensional Schrodinger operators with point interact
Publikováno v:
Mathematical Notes. 90:149-154