Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Natalie Dykes"'
Publikováno v:
Zeitschrift für Palliativmedizin. 23:46-53
Zusammenfassung Hintergrund Internetseiten stellen eine wichtige Säule in der Darstellungs- und Informationspolitik palliativmedizinischer Angebote dar. Sie fungieren als Anlaufstelle für Patienten und Angehörige, aber auch für medizinisch intere
Publikováno v:
it - Information Technology. 63:31-44
We present an approach to extracting arguments from social media, exemplified by a case study on a large corpus of Twitter messages collected under the #Brexit hashtag during the run-up to the referendum in 2016. Our method is based on constructing d
Publikováno v:
Datenbank-Spektrum. 20:123-129
Social media are of paramount importance to public discourse. RANT aims to contribute methods and formalisms for extracting, representing, and processing arguments from noisy text found in social media discussions, using a large corpus of pre-referen
Publikováno v:
Journal of Palliative Medicine. 22:1501-1505
Background: This study examines communication profiles and associated attitudes toward health care professionals in interviews with family caregivers of hospitalized patients with confirmed multidrug-resistant organisms (e.g., methicillin-resistant S
Publikováno v:
Metaphor and the Social World. 9:221-241
The study investigates the usage of metaphorical structures in the German press discourse on multi-resistant pathogens in the clinical context by applying methods of qualitative discourse analysis to a corpus of 900 newspaper and magazine articles pu
Publikováno v:
Jusletter-IT.
Publikováno v:
Zeitschrift für Palliativmedizin.
Autor:
Natalie Dykes, Joachim Peters
Publikováno v:
Journal of Corpora and Discourse Studies. 3:51
This study explores the reconstruction of argumentative patterns through keywords in a newspaper corpus on multi-resistant organisms. Starting from manually identified frequent argumentation patterns based on a previous study by (Author, 2017), keywo
Autor:
Andreas Lerner, Micha Kohl, Heiko Ermer, Nataliia Plotnikova, Natalie Dykes, Kevin Volkert, Stefan Evert
Publikováno v:
SemEval@NAACL-HLT
This paper describes the KLUEless system which participated in the SemEval-2015 task on “Sentiment Analysis in Twitter”. This year the updated system based on the developments for the same task in 2014 (Evert et al., 2014) and 2013 (Proisl et al.