Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Natalia Budarina"'
Autor:
Natalia Budarina
Publikováno v:
Glasgow Mathematical Journal. 64:411-433
AbstarctAn effective estimate for the measure of the set of real numbers for which the inequality |P(x)| {3 \over 2}n + 1$ has a solution in integral polynomials P of degree n and of height H(P) at most $Q \in {\rm{\mathbb N}}$ is obtain
Autor:
Natalia Budarina
Publikováno v:
International Journal of Number Theory. 16:651-672
In this paper, we establish a rate of convergence to zero of the measure of the set [Formula: see text] for which the inequality [Formula: see text] for [Formula: see text] has a solution in the integer polynomials [Formula: see text] of degree [Form
Publikováno v:
Articles
In this paper, we propose a new method of upper bounds for the number of integer polynomials of the fourth degree with a given discriminant. By direct calculation similar results were established by H. Davenport and D. Kaliada for polynomials of seco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f362b4dae51e1232c5f08edc576b3b4
https://arrow.tudublin.ie/context/ittsciart/article/1090/viewcontent/New_estimates_for_the_number_of_integer_polynomials_with_given_discriminants.pdf
https://arrow.tudublin.ie/context/ittsciart/article/1090/viewcontent/New_estimates_for_the_number_of_integer_polynomials_with_given_discriminants.pdf
Autor:
Natalia Budarina
Publikováno v:
Mathematische Zeitschrift. 293:809-824
We investigate the question on the rate of convergence to zero of the measure of the set $$x\in \mathbb {R}$$ for which the inequality $$|P(x)|n$$ has a solution in integral polynomials of degree n and height bounded by $$Q\in \mathbb {N}$$ . In this
Publikováno v:
Чебышевский сборник. 19:5-14
Autor:
Victor Gorobets, Ilshat Khayrullin, Tatyana Shchuklina, Natalia Budarina, O R Esin, Elena Gorobets, Rimma Gamirova
Publikováno v:
Journal of the Neurological Sciences. 429:118885
Autor:
Natalia Budarina
Publikováno v:
Funct. Approx. Comment. Math. 58, no. 2 (2018), 269-279
The solvability over the ring of integers $\mathbb Z$ of some Diophantine equations is connected with the property of integers to form sequences of prime numbers, in particular, with the property of numbers to be twins. The Diophantine description of
Publikováno v:
Articles
An upper bound for the number of cubic polynomials which have small discriminant in terms of the Euclidean and p-adic metrics simultaneously is obtained.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e066300c2cbee0175eeb3b0bf21c63c0
https://arrow.tudublin.ie/context/ittsciart/article/1104/viewcontent/Bernik2018_Article_DiscriminantsOfPolynomialsInTh.pdf
https://arrow.tudublin.ie/context/ittsciart/article/1104/viewcontent/Bernik2018_Article_DiscriminantsOfPolynomialsInTh.pdf
We generalize the result of Davenport on the sum of absolute values of discriminants of integer polynomials of degree three. For the first time, we find the exact upper bound for the number of polynomials with given discriminant in the class of cubic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8627cd0ad02ffc1e717d872ef26f581d
https://doi.org/10.1007/s10986-017-9361-4
https://doi.org/10.1007/s10986-017-9361-4
Publikováno v:
Sovremennye Problemy Matematiki. 17:61-75