Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Nastorg, Matthieu"'
Autor:
Nastorg, Matthieu, Gratien, Jean-Marc, Faney, Thibault, Bucci, Michele Alessandro, Charpiat, Guillaume, Schoenauer, Marc
Large-scale numerical simulations often come at the expense of daunting computations. High-Performance Computing has enhanced the process, but adapting legacy codes to leverage parallel GPU computations remains challenging. Meanwhile, Machine Learnin
Externí odkaz:
http://arxiv.org/abs/2402.08296
Autor:
Nastorg, Matthieu, Bucci, Michele Alessandro, Faney, Thibault, Gratien, Jean-Marc, Charpiat, Guillaume, Schoenauer, Marc
This paper presents $\Psi$-GNN, a novel Graph Neural Network (GNN) approach for solving the ubiquitous Poisson PDE problems with mixed boundary conditions. By leveraging the Implicit Layer Theory, $\Psi$-GNN models an "infinitely" deep network, thus
Externí odkaz:
http://arxiv.org/abs/2302.10891
Autor:
Nastorg, Matthieu, Schoenauer, Marc, Charpiat, Guillaume, Faney, Thibault, Gratien, Jean-Marc, Bucci, Michele-Alessandro
Publikováno v:
Machine Learning and the Physical Sciences workshop, NeurIPS 2022, Dec 2022, New-Orleans, United States
This paper proposes a novel Machine Learning-based approach to solve a Poisson problem with mixed boundary conditions. Leveraging Graph Neural Networks, we develop a model able to process unstructured grids with the advantage of enforcing boundary co
Externí odkaz:
http://arxiv.org/abs/2211.11763
Autor:
Nastorg, Matthieu, Bucci, Michele-Alessandro, Faney, Thibault, Gratien, Jean-Marc, Charpiat, Guillaume, Schoenauer, Marc
Publikováno v:
In Computers and Mathematics with Applications 15 December 2024 176:270-288
Autor:
Nastorg, Matthieu, Schoenauer, Marc, Charpiat, Guillaume, Faney, Thibault, Gratien, Jean-Marc, Bucci, Michele Alessandro
Publikováno v:
NeurIPS 2022-Machine Learning and the Physical Sciences, workshop
NeurIPS 2022-Machine Learning and the Physical Sciences, workshop, Dec 2022, New-Orleans, United States
NeurIPS 2022-Machine Learning and the Physical Sciences, workshop, Dec 2022, New-Orleans, United States
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::1ee1520f0f6d1056f9a0aac13cb2797e
https://inria.hal.science/hal-03864015
https://inria.hal.science/hal-03864015