Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Nasrin Altafi"'
Publikováno v:
Journal of Algebra. 625:28-45
Codimension two Artinian algebras $A$ have the strong and weak Lefschetz properties provided the characteristic is zero or greater than the socle degree. It is open to what extent such results might extend to codimension three AG algebras - the most
Autor:
Nasrin Altafi
Publikováno v:
Proceedings of the American Mathematical Society. 150:499-513
We prove that a sequence $h$ of non-negative integers is the Hilbert function of some Artinian Gorenstein algebra with the strong Lefschetz property if and only if it is an SI-sequence. This generalizes the result by T. Harima which characterizes the
Autor:
Samuel Lundqvist, Nasrin Altafi
We give a sharp lower bound for the Hilbert function in degree d of artinian quotients $$\Bbbk [x_1,\ldots ,x_n]/I$$ k [ x 1 , … , x n ] / I failing the Strong Lefschetz property, where I is a monomial ideal generated in degree $$d \ge 2$$ d ≥ 2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36242bc7aab13c93f59a8ac3af7ff1bc
Autor:
Navid Nemati, Nasrin Altafi
Publikováno v:
Communications in Algebra
Communications in Algebra, Taylor & Francis, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩
Communications in Algebra, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩
Communications in Algebra, Taylor & Francis, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩
Communications in Algebra, 2020, 48 (4), pp.1499-1509. ⟨10.1080/00927872.2019.1691568⟩
International audience; We study the WLP and SLP of artinian monomial ideals in S = K[x 1 ,. .. , x n ] via studying their minimal free resolutions. We study the Lefschetz properties of such ideals where the minimal free resolution of S/I is linear f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f49006d8cd6b54a85ffa656b2c2bc6e
https://hal.inria.fr/hal-03133849
https://hal.inria.fr/hal-03133849
Autor:
Nasrin Altafi, Mats Boij
We determine a sharp lower bound for the Hilbert function in degree $d$ of a monomial algebra failing the weak Lefschetz property over a polynomial ring with $n$ variables and generated in degree $d$, for any $d\geq 2$ and $n\geq 3$. We consider arti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e0abafb920cf63f2dd0cc970cb61342
http://arxiv.org/abs/1807.02138
http://arxiv.org/abs/1807.02138
We determine every Jordan type partition that occurs as the Jordan block decomposition for the multiplication map by a linear form in a height two homogeneous complete intersection (CI) Artinian algebra $A$ over an algebraically closed field $\sf k$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc011d23aeb44a3a9cdbeeb564d496df
Publikováno v:
Mathematica Scandinavica
Let $S = \mathbb{K}[x_1, \dots, x_n]$ be the polynomial ring over a field $\mathbb{K}$. In this paper we present a criterion for componentwise linearity of powers of monomial ideals. In particular, we prove that if a square-free monomial ideal $I$ co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45472aff1eba4419b4700b6e09257b7f
https://hdl.handle.net/21.11116/0000-000C-C273-721.11116/0000-000C-C275-5
https://hdl.handle.net/21.11116/0000-000C-C273-721.11116/0000-000C-C275-5
Autor:
Nasrin Altafi
We study Jordan types of linear forms for graded Artinian Gorenstein algebras having arbitrary codimension. We introduce rank matrices of linear forms for such algebras that represent the ranks of multiplication maps in various degrees. We show that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80c9d7f2d6458b1a0e131758eaac5540
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279441
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279441