Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Narra, Sneha P."'
Autor:
Miner, Justin P., Narra, Sneha Prabha
Previous work on fatigue prediction in Powder Bed Fusion - Laser Beam has shown that the estimate of the largest pore size within the stressed volume is correlated with the resulting fatigue behavior in porosity-driven failures. However, single value
Externí odkaz:
http://arxiv.org/abs/2411.03401
Metal additive manufacturing (AM) opens the possibility for spatial control of as-fabricated microstructure and properties. However, since the solid state diffusional transformations that drive microstructure outcomes are governed by nonlinear ODEs i
Externí odkaz:
http://arxiv.org/abs/2410.18207
Additive manufacturing (AM) techniques hold promise but face significant challenges in process planning and optimization. The large temporal and spatial variations in temperature that can occur in layer-wise AM lead to thermal excursions, resulting i
Externí odkaz:
http://arxiv.org/abs/2406.07408
Autor:
Chen, Jiangce, Xu, Wenzhuo, Xu, Zeda, Gutiérrez, Noelia Grande, Narra, Sneha Prabha, McComb, Christopher
Transport phenomena (e.g., fluid flows) are governed by time-dependent partial differential equations (PDEs) describing mass, momentum, and energy conservation, and are ubiquitous in many engineering applications. However, deep learning architectures
Externí odkaz:
http://arxiv.org/abs/2405.01319
Autor:
Wassermann, Nathan A., Li, Yongchang, Myers, Alexander J., Kantzos, Christopher A., Smith, Timothy M., Beuth, Jack L., Malen, Jonathan A., Shao, Lin, McGaughey, Alan J. H., Narra, Sneha P.
Previous work on additively-manufactured oxide dispersion strengthened alloys focused on experimental approaches, resulting in larger dispersoid sizes and lower number densities than can be achieved with conventional powder metallurgy. To improve the
Externí odkaz:
http://arxiv.org/abs/2310.12416
Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators
Autor:
Chen, Jiangce, Xu, Wenzhuo, Baldwin, Martha, Nijhuis, Björn, Boogaard, Ton van den, Gutiérrez, Noelia Grande, Narra, Sneha Prabha, McComb, Christopher
High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and con
Externí odkaz:
http://arxiv.org/abs/2307.01804
Autor:
Reddy, Tharun, Ngo, Austin, Miner, Justin P., Gobert, Christian, Beuth, Jack L., Rollett, Anthony D., Lewandowski, John J., Narra, Sneha P.
Publikováno v:
In International Journal of Fatigue October 2024 187
Publikováno v:
In Materials Characterization May 2024 211
Autor:
Wassermann, Nathan A., Li, Yongchang, Myers, Alexander J., Kantzos, Christopher A., Smith, Timothy M., Beuth, Jack L., Malen, Jonathan A., Shao, Lin, McGaughey, Alan J.H., Narra, Sneha P.
Publikováno v:
In Additive Manufacturing 5 February 2024 81
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.