Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Naresh M. Chadha"'
Autor:
Shruti Tomar, Naresh M. Chadha
Publikováno v:
Chaos Theory and Applications, Vol 5, Iss 4, Pp 286-292 (2023)
In this article, we consider the Generalized Damped Forced Korteweg-de Vries (GDFKdV) equation. The forcing term considered is of the form $F(U)=U(U-v_1)(U-v_2)$, where $v_1$ and $v_2$ are free parameters. We investigate the behaviour of fixed points
Externí odkaz:
https://doaj.org/article/c8d5f9144a914b978cf48eea1a58cb3e
Publikováno v:
Advances in Mathematical Modelling, Applied Analysis and Computation ISBN: 9783031299582
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55436b21d589ab453f0d0ae5813c85dd
https://doi.org/10.1007/978-3-031-29959-9_11
https://doi.org/10.1007/978-3-031-29959-9_11
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation. 123:107269
Publikováno v:
Handbook of Fractional Calculus for Engineering and Science ISBN: 9781003263517
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a40492235fbac9b23feb4b61c1769445
https://doi.org/10.1201/9781003263517-6
https://doi.org/10.1201/9781003263517-6
Publikováno v:
International Journal of Applied and Computational Mathematics. 7
Autor:
Sunita Kumawat, Naresh M. Chadha
Publikováno v:
Advanced Numerical Methods for Differential Equations ISBN: 9781003097938
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3075760a0ec72821bb75f2e3f3959cab
https://doi.org/10.1201/9781003097938-5
https://doi.org/10.1201/9781003097938-5
Autor:
Naresh M. Chadha, Niall Madden
Publikováno v:
Journal of Computational and Applied Mathematics. 294:57-77
We consider the numerical solution of a linear time dependent advection-diffusion problem by an implicit two-weight, three-point finite difference scheme. We extend the scheme proposed by Chadha and Madden (2011), to incorporate an optimal time step
Autor:
Natalia Kopteva, Naresh M. Chadha
Publikováno v:
Advances in Computational Mathematics. 35:33-55
A singularly perturbed semilinear reaction-diffusion problem in the unit cube, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small d
Autor:
Natalia Kopteva, Naresh M. Chadha
Publikováno v:
IMA Journal of Numerical Analysis. 31:188-211
The numerical solution of a singularly perturbed semilinear reaction-diffusion two-point boundary-value problem is addressed. The method considered is adaptive movement of a fixed number (N + 1) of mesh points by equidistribution of a monitor functio
Autor:
Niall Madden, Naresh M. Chadha
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783642196645
We consider a family of two-weight finite difference schemes for a time-dependent advection-diffusion problem. For a given uniform grid-spacing in time and space, and for a fixed value of advection and diffusion parameters, we demonstrate how to opti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e359daed2dc359495ad9020a28155710
https://doi.org/10.1007/978-3-642-19665-2_11
https://doi.org/10.1007/978-3-642-19665-2_11