Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Narcisse Randrianantoanina"'
Autor:
Narcisse Randrianantoanina
Publikováno v:
Annales de l'Institut Fourier. :1-41
Autor:
Narcisse Randrianantoanina
Publikováno v:
Transactions of the American Mathematical Society. 376:2089-2124
Let M \mathcal {M} be a semifinite von Nemann algebra equipped with an increasing filtration ( M n ) n ≥ 1 (\mathcal {M}_n)_{n\geq 1} of (semifinite) von Neumann subalgebras of M \mathcal {M} . For 0 > p ≤ ∞ 0>p \leq \infty , let h p c ( M ) \m
Autor:
Narcisse Randrianantoanina
Publikováno v:
Canadian Journal of Mathematics. 74:1700-1744
Let$\mathcal {M}$be a semifinite von Nemann algebra equipped with an increasing filtration$(\mathcal {M}_n)_{n\geq 1}$of (semifinite) von Neumann subalgebras of$\mathcal {M}$. For$0, let$\mathsf {h}_p^c(\mathcal {M})$denote the noncommutative column
We prove an atomic type decomposition for the noncommutative martingale Hardy space $\h_p$ for all $0
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43b5f52ce2605e7a741798d1f7936e31
https://hal.archives-ouvertes.fr/hal-03242660
https://hal.archives-ouvertes.fr/hal-03242660
Publikováno v:
Journal of the London Mathematical Society. 99:97-126
We prove the noncommutative Davis decomposition for the column Hardy space $\H_p^c$ for all $0
We prove inequalities involving noncommutative differentially subordinate martingales. More precisely, we prove that if $x$ is a self-adjoint noncommutative martingale and $y$ is weakly differentially subordinate to $x$ then $y$ admits a decompositio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5df6eb8146c8a697758d3c7b71749e04
Publikováno v:
Journal of Functional Analysis. 280:108794
Autor:
Lian Wu, Narcisse Randrianantoanina
Publikováno v:
Journal of Functional Analysis. 269:2222-2253
We provide generalizations of Burkholder's inequalities involving conditioned square functions of martingales to the general context of martingales in noncommutative symmetric spaces. More precisely, we prove that Burkholder's inequalities are valid
Publikováno v:
Journal of Mathematical Analysis and Applications. 409:13-27
We provide characterizations of convex, compact for the topology of local convergence in measure subsets of non-commutative L 1 -spaces previously considered for classical L 1 -spaces. More precisely, if M is a semifinite and σ -finite von Neumann a
Autor:
Narcisse Randrianantoanina
Publikováno v:
Archiv der Mathematik. 101:541-548
Let \({\mathcal{M}}\) be a finite von Neumann algebra equipped with a normal tracial state τ. It is shown that if \({\{x_n\}_{n\geq1}}\) is a sequence of positive marginales that is bounded in \({L^1(\mathcal{M},\mathcal{T})}\), then for every 0 < p