Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Narayan Phadatare"'
Publikováno v:
AIMS Mathematics, Vol 7, Iss 2, Pp 2634-2645 (2022)
Let $ G_1 \square G_2 $ be the Cartesian product of simple, connected and finite graphs $ G_1 $ and $ G_2 $. We give necessary and sufficient conditions for the Cartesian product of graphs to be very strongly perfect. Further, we introduce and charac
Externí odkaz:
https://doaj.org/article/648fe1e102aa4dabbb6715d7d3c47dbc
Publikováno v:
Journal of Mathematics, Vol 2022 (2022)
Let L be a multiplicative lattice and M be a lattice module over L. In this paper, we assign a graph to M called residual division graph RG(M) in which the element N∈M is a vertex if there exists 0M≠P∈M such that NP=0M and two vertices N1,N2 ar
Externí odkaz:
https://doaj.org/article/05737120d39343efb64ff018b65f204d
Publikováno v:
AIMS Mathematics, Vol 7, Iss 2, Pp 2634-2645 (2022)
Let $ G_1 \square G_2 $ be the Cartesian product of simple, connected and finite graphs $ G_1 $ and $ G_2 $. We give necessary and sufficient conditions for the Cartesian product of graphs to be very strongly perfect. Further, we introduce and charac
Publikováno v:
Volume: 25, Issue: 25 186-198
International Electronic Journal of Algebra
International Electronic Journal of Algebra
Let $M$ be a lattice module over a $C$-lattice $L$. A proper element $P$ of $M$ is said to be classical prime if for$a ,b\in L$ and $X\in M, abX\leq P$ implies that $aX\leq P$ or $bX\leq P$. The set of all classical prime elements of $M$, $Spec^{cp}(
Publikováno v:
Discussiones Mathematicae-General Algebra and Applications, Vol 37, Iss 1, Pp 59-74 (2017)
The second spectrum Specs(M) is the collection of all second elements of M. In this paper, we study the topology on Specs(M), which is a generalization of the Zariski topology on the prime spectrum of lattice modules. Besides some properties, Specs(M
Publikováno v:
Asian-European Journal of Mathematics. 14:2150055
Let [Formula: see text] be a lattice module over a [Formula: see text]-lattice [Formula: see text]. In this paper, we introduce the concept of the Zariski second radical of elements of [Formula: see text] and investigate some properties of Zariski se
Autor:
Narayan Phadatare, Vilas Kharat
Publikováno v:
Tbilisi Math. J. 11, iss. 4 (2018), 165-173
Let $L$ be a $C$-lattice and $M$ be a lattice module over $L$. For a non-zero element $N\in M$, join of all second elements $X$ of $M$ with $X\leq N$ is called the second radical of $N$, and it is denoted by $\sqrt[s]{N}$. In this paper, we study som
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d594b6f4a5a22776f2503de0b2148dcf
https://projecteuclid.org/euclid.tbilisi/1546570892
https://projecteuclid.org/euclid.tbilisi/1546570892