Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Narasimhamurthy, Sai"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rivas-Gomez, Sergio, Narasimhamurthy, Sai, Brabazon, Keeran, Perks, Oliver, Laure, Erwin, Markidis, Stefano
In this work, we consider the integration of MPI one-sided communication and non-blocking I/O in HPC-centric MapReduce frameworks. Using a decoupled strategy, we aim to overlap the Map and Reduce phases of the algorithm by allowing processes to commu
Externí odkaz:
http://arxiv.org/abs/1810.04146
Autor:
Rivas-Gomez, Sergio, Gioiosa, Roberto, Peng, Ivy Bo, Kestor, Gokcen, Narasimhamurthy, Sai, Laure, Erwin, Markidis, Stefano
Upcoming HPC clusters will feature hybrid memories and storage devices per compute node. In this work, we propose to use the MPI one-sided communication model and MPI windows as unique interface for programming memory and storage. We describe the des
Externí odkaz:
http://arxiv.org/abs/1810.04110
Autor:
Chien, Steven W. D., Markidis, Stefano, Sishtla, Chaitanya Prasad, Santos, Luis, Herman, Pawel, Narasimhamurthy, Sai, Laure, Erwin
The performance of Deep-Learning (DL) computing frameworks rely on the performance of data ingestion and checkpointing. In fact, during the training, a considerable high number of relatively small files are first loaded and pre-processed on CPUs and
Externí odkaz:
http://arxiv.org/abs/1810.03035
One of the major performance and scalability bottlenecks in large scientific applications is parallel reading and writing to supercomputer I/O systems. The usage of parallel file systems and consistency requirements of POSIX, that all the traditional
Externí odkaz:
http://arxiv.org/abs/1807.02562
Autor:
Narasimhamurthy, Sai, Danilov, Nikita, Wu, Sining, Umanesan, Ganesan, Chien, Steven Wei-der, Rivas-Gomez, Sergio, Peng, Ivy Bo, Laure, Erwin, de Witt, Shaun, Pleiter, Dirk, Markidis, Stefano
SAGE (Percipient StorAGe for Exascale Data Centric Computing) is a European Commission funded project towards the era of Exascale computing. Its goal is to design and implement a Big Data/Extreme Computing (BDEC) capable infrastructure with associate
Externí odkaz:
http://arxiv.org/abs/1807.03632
Autor:
Narasimhamurthy, Sai, Danilov, Nikita, Wu, Sining, Umanesan, Ganesan, Markidis, Stefano, Rivas-Gomez, Sergio, Peng, Ivy Bo, Laure, Erwin, Pleiter, Dirk, de Witt, Shaun
Publikováno v:
Parallel Computing, 23 March 2018
We aim to implement a Big Data/Extreme Computing (BDEC) capable system infrastructure as we head towards the era of Exascale computing - termed SAGE (Percipient StorAGe for Exascale Data Centric Computing). The SAGE system will be capable of storing
Externí odkaz:
http://arxiv.org/abs/1805.00556
Autor:
Narasimhamurthy, Sai, Danilov, Nikita, Wu, Sining, Umanesan, Ganesan, Markidis, Stefano, Rivas-Gomez, Sergio, Peng, Ivy Bo, Laure, Erwin, Pleiter, Dirk, Witt, Shaun de
Publikováno v:
In Parallel Computing April 2019 83:22-33
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
This deliverable reports on the two storage technologies from two vendors, DDN and Seagate, which were designed to work with the Earth System Data Middleware (ESDM) - details of which were reported in Deliverable D4.1 “Advanced software stack for E
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::360d6a628cf8cc04cdb6ace4c5c7b7a2