Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Naranjo J. C."'
We study an explicit $(2g-1)$-dimensional family of Jacobian varieties of dimension $\frac{d-1}2(g-1)$, arising from quotient curves of unramified cyclic coverings of prime degree $d$ of hyperelliptic curves of genus $g\ge 2$. By using a deformation
Externí odkaz:
http://arxiv.org/abs/2411.10134
We consider cyclic unramified coverings of degree d of irreducible complex smooth genus 2 curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. The rich geometry of
Externí odkaz:
http://arxiv.org/abs/2306.02147
We study the ramified Prym map $\mathcal P_{g,r} \longrightarrow \mathcal A_{g-1+\frac r2}^{\delta}$ which assigns to a ramified double cover of a smooth irreducible curve of genus $g$ ramified in $r$ points the Prym variety of the covering. We focus
Externí odkaz:
http://arxiv.org/abs/2007.02068
We study the subsets $V_k(A)$ of a complex abelian variety $A$ consisting in the collection of points $x\in A$ such that the zero-cycle $\{x\}-\{0_A\}$ is $k$-nilpotent with respect to the Pontryagin product in the Chow group. These sets were introdu
Externí odkaz:
http://arxiv.org/abs/2004.06907
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove by means of the study of the infinitesimal variation of Hodge structure and a generalization of the classical Babbage-Enriques-Petri theorem that the Jacobian variety of a generic element of a $k$ codimensional subvariety of $\mathcal M_g$ i
Externí odkaz:
http://arxiv.org/abs/1405.2545
The Fano surface $F$ of lines in the cubic threefold $V$ is naturally embedded in the intermediate Jacobian $J(V)$, we call "Fano cycle" the difference $F-F^-$, this is homologous to 0 in $J(V)$. We study the normal function on the moduli space which
Externí odkaz:
http://arxiv.org/abs/1109.1456
We study the topological index of some irregular surfaces that we call generalized Lagrangian. We show that under certain hypotheses on the base locus of the Lagrangian system the topological index is non-negative. For the minimal surfaces of general
Externí odkaz:
http://arxiv.org/abs/math/0604364
Autor:
Naranjo, J. C, Pirola, G. P
We give a bound for the number of rational maps between algebraic varieties of general type under mild hypothesis on the canonical map. We use an idea inspired by Tanabe's work. Instead of attaching a morphism of Hodge structures to a rational map we
Externí odkaz:
http://arxiv.org/abs/math/0511463
Autor:
Naranjo, J. C., Pirola, G. P.
Publikováno v:
American Journal of Mathematics, 2007 Dec 01. 129(6), 1689-1709.
Externí odkaz:
https://www.jstor.org/stable/40068112