Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Narad Rampersad"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 25:2, Iss Combinatorics (2023)
The (bitwise) complement $\overline{x}$ of a binary word $x$ is obtained by changing each $0$ in $x$ to $1$ and vice versa. An $\textit{antisquare}$ is a nonempty word of the form $x\, \overline{x}$. In this paper, we study infinite binary words that
Externí odkaz:
https://doaj.org/article/3d9f4a915cd44c29b73e8397b2fc2d26
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 22 no. 1, Iss Analysis of Algorithms (2020)
A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2
Externí odkaz:
https://doaj.org/article/6b5f4e37e2a04a9da3a0ea47152450ac
Publikováno v:
Nonpartisan Education Review, Vol 20, Iss 2, Pp 1-47 (2024)
In a Winnipeg Free Press article, Mathematics education of Manitoba teachers should be based on research (November 13, 2024), Dr. Martha Koch, an Associate Professor in the Faculty of Education at the University of Manitoba, made several claims about
Externí odkaz:
https://doaj.org/article/f8ff87e2263545169c85f3fcb4fa3455
Autor:
Adam Borchert, Narad Rampersad
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 20 no. 1, Iss Combinatorics (2018)
We show that the permutation complexity of the image of a Sturmian word by a binary marked morphism is $n+k$ for some constant $k$ and all lengths $n$ sufficiently large.
Externí odkaz:
https://doaj.org/article/013873f57210459386c09821b17de3c9
Publikováno v:
Electronic Proceedings in Theoretical Computer Science, Vol 63, Iss Proc. WORDS 2011, Pp 189-198 (2011)
We prove a Fife-like characterization of the infinite binary (7/3)-power-free words, by giving a finite automaton of 15 states that encodes all such words. As a consequence, we characterize all such words that are 2-automatic.
Externí odkaz:
https://doaj.org/article/530d09a6bb404121ba901f690241d817
Publikováno v:
Electronic Proceedings in Theoretical Computer Science, Vol 31, Iss Proc. DCFS 2010, Pp 48-57 (2010)
Under some mild assumptions, we study the state complexity of the trim minimal automaton accepting the greedy representations of the multiples of m >= 2 for a wide class of linear numeration systems. As an example, the number of states of the trim mi
Externí odkaz:
https://doaj.org/article/35971ca60e5e454482f95f746e1453b8
Autor:
Anne Lacroix, Narad Rampersad
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 15 no. 1, Iss Automata, Logic and Semantics (2013)
Automata, Logic and Semantics
Externí odkaz:
https://doaj.org/article/2a48affec61d4fdf9cfa25438cfd9c4c
Autor:
James Currie, Narad Rampersad
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 12 no. 3, Iss Automata, Logic and Semantics (2010)
Automata, Logic and Semantics
Externí odkaz:
https://doaj.org/article/f6ed26d394714a6fbd0741270b659655
Publikováno v:
Theoretical Computer Science. 918:32-47
We study the properties of the ternary infinite word p = 012102101021012101021012⋯, that is, the fixed point of the map h : 0 → 01, 1 → 21, 2 → 0. We determine its factor complexity, critical exponent, and prove that it is 2-balanced. We comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bed0c20be9710278d037b2d87b7daaf
http://arxiv.org/abs/2206.01776
http://arxiv.org/abs/2206.01776