Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Naotaka Kajino"'
Autor:
Naotaka Kajino
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9789811946714
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::26eb861e31a20e79de712d1d906f8b31
https://doi.org/10.1007/978-981-19-4672-1_13
https://doi.org/10.1007/978-981-19-4672-1_13
Autor:
Naotaka Kajino
Publikováno v:
Stochastic Analysis, Random Fields and Integrable Probability — Fukuoka 2019 ISBN: 9784864970952
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5166f3e6a44857a26165ccdefbe15cda
https://doi.org/10.2969/aspm/08710293
https://doi.org/10.2969/aspm/08710293
Autor:
Mathav Murugan, Naotaka Kajino
Publikováno v:
Ann. Probab. 48, no. 6 (2020), 2920-2951
We show that for a strongly local, regular symmetric Dirichlet form over a complete, locally compact geodesic metric space, full off-diagonal heat kernel estimates with walk dimension strictly larger than two (\emph{sub-Gaussian} estimates) imply the
Autor:
Alexander Grigor'yan, Naotaka Kajino
Publikováno v:
Transactions of the American Mathematical Society. 369(2):1025-1060
We prove that for a general diffusion process, certain assumptions on its behavior \emph{only within a fixed open subset} of the state space imply the existence and sub-Gaussian type off-diagonal upper bounds of the \emph{global} heat kernel on the f
Autor:
Naotaka Kajino, Sebastian Andres
Publikováno v:
Probability Theory and Related Fields. 166(3-4):713-752
The Liouville Brownian motion (LBM), recently introduced by Garban, Rhodes and Vargas and in a weaker form also by Berestycki, is a diffusion process evolving in a planar random geometry induced by the Liouville measure $M_\gamma$, formally written a
Autor:
Naotaka Kajino
Publikováno v:
Communications in Mathematical Physics. 328(3):1341-1370
Let $${{\fancyscript{Z}}(t)}$$ be the partition function (the trace of the heat semigroup) of the canonical Laplacian on a post-critically finite self-similar set (with uniform resistance scaling factor and good geometric symmetry) or on a generalize
Autor:
Naotaka Kajino
Publikováno v:
Probability Theory and Related Fields. 156(1-2):51-74
For the canonical heat kernels p t (x, y) associated with Dirichlet forms on post-critically finite self-similar fractals, e.g. the transition densities (heat kernels) of Brownian motion on affine nested fractals, the non-existence of the limit $${\l
Autor:
Naotaka Kajino
Given a symmetric Dirichlet form $(\mathcal{E},\mathcal{F})$ on a (non-trivial) $\sigma$-finite measure space $(E,\mathcal{B},m)$ with associated Markovian semigroup $\{T_{t}\}_{t\in(0,\infty)}$, we prove that $(\mathcal{E},\mathcal{F})$ is both irre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc4bd08814f67ec8c6b56d0549d3e531
Autor:
Naotaka Kajino
Publikováno v:
Contemporary Mathematics. 600:91-133
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in Pure Mathematics