Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Naoi, Katsuyuki"'
Autor:
Naoi, Katsuyuki
Publikováno v:
Transformation Groups (2024)
The extended $T$-systems are a number of short exact sequences in the category of finite-dimensional modules over the quantum affine algebras of types $A_n^{(1)}$ and $B_n^{(1)}$, introduced by Mukhin and Young as a generalization of the $T$-systems.
Externí odkaz:
http://arxiv.org/abs/2305.15681
Autor:
Naoi, Katsuyuki
Publikováno v:
Advances in Mathematics 389 (2021) 107916
We prove in full generality that the generalized quantum affine Schur-Weyl duality functor, introduced by Kang-Kashiwara-Kim, gives an equivalence between the category of finite-dimensional modules over a quiver Hecke algebra and a certain full subca
Externí odkaz:
http://arxiv.org/abs/2101.03573
Autor:
Naoi, Katsuyuki, Scrimshaw, Travis
Publikováno v:
J. Pure Appl. Algebra, 225(5) (2021) 106593
We prove that, in types $E_{6,7,8}^{(1)}$, $F_4^{(1)}$ and $E_6^{(2)}$, every Kirillov--Reshetikhin module associated with the node adjacent to the adjoint one (near adjoint node) has a crystal pseudobase, by applying the criterion introduced by Kang
Externí odkaz:
http://arxiv.org/abs/1903.11681
Autor:
Naoi, Katsuyuki
Publikováno v:
J. Algebra 512 (2018): 47-65
In this paper we prove that every Kirillov-Reshetikhin module of type $G_2^{(1)}$ and $D_4^{(3)}$ has a crystal pseudobase (crystal base modulo signs), by applying the criterion for the existence of a crystal pseudobase due to Kang et al.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/1710.11321
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Naoi, Katsuyuki
Publikováno v:
International Mathematics Research Notices 2017 (2017), issue 18, 5667-5709
We study the classical limit of a tensor product of Kirillov-Reshetikhin modules over a quantum loop algebra, and show that it is realized from the classical limits of the tensor factors using the notion of fusion products. In the process of the proo
Externí odkaz:
http://arxiv.org/abs/1604.02577
Autor:
Naoi, Katsuyuki, Scrimshaw, Travis
Publikováno v:
In Journal of Pure and Applied Algebra May 2021 225(5)
Autor:
Naoi, Katsuyuki
Publikováno v:
Toyama Mathematical Journal 37 (2015): 87-106
In this note we give defining relations of an $\mathfrak{sl}_{n+1}[t]$-module defined by the fusion product of simple $\mathfrak{sl}_{n+1}$-modules whose highest weights are multiples of a given fundamental weight. From this result we obtain a surjec
Externí odkaz:
http://arxiv.org/abs/1504.00109
Autor:
Li, Jian-Rong, Naoi, Katsuyuki
Publikováno v:
Algebras and Representation Theory August 2016, Volume 19, Issue 4, pp 957--973
The aim of this paper is to study the graded limits of minimal affinizations over the quantum loop algebra of type $G_2$. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and obtain defining relations of
Externí odkaz:
http://arxiv.org/abs/1503.02178
Autor:
Naoi, Katsuyuki
Publikováno v:
SIGMA 10 (2014), 047, 20 pages
We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a
Externí odkaz:
http://arxiv.org/abs/1310.5321