Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Named entity detection"'
Autor:
Fahim K Sufi
Publikováno v:
International Journal of Information Management Data Insights, Vol 2, Iss 1, Pp 100074- (2022)
Modern-day news agencies cater for a wide range of negative news, since multiple studies show general people are more attracted towards negative news. Once a highly negative incident is reported by a local news agency, it is often propagated by many
Externí odkaz:
https://doaj.org/article/2d8c0fc27d704ca1857119750b8cd30f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
S. L. Devi, C. S. Malarkodi
Publikováno v:
Advances in Electrical and Computer Engineering, Vol 19, Iss 1, Pp 79-88 (2019)
This paper describes the development of language and domain independent Named Entity Recognition (NER) system which can identify named entities from any given dataset irrespective of the language and domain. The main novelty of the present work is th
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Scopus-Elsevier
CLiC-it/EVALITA
CLiC-it/EVALITA
In this paper we present the MicroNeel system for Named Entity Recognition and Entity Linking on Italian microposts, which participated in the NEEL-IT task at EVALITA 2016. MicroNeel combines The Wiki Machine and Tint, two standard NLP tools, with co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14e55c232326478ebe47f19efdf2ada4
http://books.openedition.org/aaccademia/1948
http://books.openedition.org/aaccademia/1948
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319668079
CD-MAKE
Lecture Notes in Computer Science
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE)
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2017, Reggio, Italy. pp.330-345, ⟨10.1007/978-3-319-66808-6_22⟩
CD-MAKE
Lecture Notes in Computer Science
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE)
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2017, Reggio, Italy. pp.330-345, ⟨10.1007/978-3-319-66808-6_22⟩
Part 6: MAKE Semantics; International audience; Named Entity Recognition (NER) and Named Entity Linking (NEL) are two research areas that have shown big advancements in recent years. The majority of this research is based on the English language. Hen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4e80927aab084203b0bf6bc38b30b3b
https://doi.org/10.1007/978-3-319-66808-6_22
https://doi.org/10.1007/978-3-319-66808-6_22
Publikováno v:
Speech Communication. 54:491-502
Named Entity (NE) detection from Conversational Telephone Speech (CTS) is important from business aspects. However, results of Automatic Speech Recognition (ASR) inevitably contain errors and this makes NE detection from CTS more difficult than from
Publikováno v:
International Journal on Document Analysis and Recognition (IJDAR). 14:189-200
In this paper, we focus on information extraction from optical character recognition (OCR) output. Since the content from OCR inherently has many errors, we present robust algorithms for information extraction from OCR lattices instead of merely look
Autor:
Rajdeep Niyogi, Jayendra Barua
Publikováno v:
International Journal of Intelligent Information and Database Systems. 12:279
In this paper, we present a framework for extraction and disambiguation of hyphenated and partially named entities in news headlines. The direct application of state-of-the-art named entity detection and disambiguation approaches on news headlines re
Publikováno v:
Communications in Computer and Information Science ISBN: 9789811031670
CCKS
CCKS
This paper describes the TEDL system for the entity discovery and linking, which compete the CCKS2016 domain-specific entity discovery and linking task. Given one review text and one pre-constructed movie knowledge base (MKB) from the douban website,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::241a19d999c941bab4a718254d00fc71
https://doi.org/10.1007/978-981-10-3168-7_21
https://doi.org/10.1007/978-981-10-3168-7_21