Zobrazeno 1 - 10
of 652
pro vyhledávání: '"Named entity detection"'
In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensitive to the choice of demonstrations, and it remains
Externí odkaz:
http://arxiv.org/abs/2412.11923
In a sentence, certain words are critical for its semantic. Among them, named entities (NEs) are notoriously challenging for neural models. Despite their importance, their accurate handling has been neglected in speech-to-text (S2T) translation resea
Externí odkaz:
http://arxiv.org/abs/2210.11981
Autor:
MALARKODI, C. S., DEVI, S. L.
Publikováno v:
Advances in Electrical and Computer Engineering, Vol 19, Iss 1, Pp 79-88 (2019)
This paper describes the development of language and domain independent Named Entity Recognition (NER) system which can identify named entities from any given dataset irrespective of the language and domain. The main novelty of the present work is
Externí odkaz:
https://doaj.org/article/d52b2ed1793c4a3595161ab59c96e2ee
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
In a sentence, certain words are critical for its semantic. Among them, named entities (NEs) are notoriously challenging for neural models. Despite their importance, their accurate handling has been neglected in speech-to-text (S2T) translation resea
Autor:
S. L. Devi, C. S. Malarkodi
Publikováno v:
Advances in Electrical and Computer Engineering, Vol 19, Iss 1, Pp 79-88 (2019)
This paper describes the development of language and domain independent Named Entity Recognition (NER) system which can identify named entities from any given dataset irrespective of the language and domain. The main novelty of the present work is th
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Scopus-Elsevier
CLiC-it/EVALITA
CLiC-it/EVALITA
In this paper we present the MicroNeel system for Named Entity Recognition and Entity Linking on Italian microposts, which participated in the NEEL-IT task at EVALITA 2016. MicroNeel combines The Wiki Machine and Tint, two standard NLP tools, with co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14e55c232326478ebe47f19efdf2ada4
http://books.openedition.org/aaccademia/1948
http://books.openedition.org/aaccademia/1948
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319668079
CD-MAKE
Lecture Notes in Computer Science
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE)
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2017, Reggio, Italy. pp.330-345, ⟨10.1007/978-3-319-66808-6_22⟩
CD-MAKE
Lecture Notes in Computer Science
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE)
1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2017, Reggio, Italy. pp.330-345, ⟨10.1007/978-3-319-66808-6_22⟩
Part 6: MAKE Semantics; International audience; Named Entity Recognition (NER) and Named Entity Linking (NEL) are two research areas that have shown big advancements in recent years. The majority of this research is based on the English language. Hen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4e80927aab084203b0bf6bc38b30b3b
https://doi.org/10.1007/978-3-319-66808-6_22
https://doi.org/10.1007/978-3-319-66808-6_22