Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Nam, Hayan"'
Numerical semigroups are cofinite additive submonoids of the natural numbers. In 2011, Keith and Nath illustrated an injection from numerical semigroups to integer partitions. We explore this connection between partitions and numerical semigroups wit
Externí odkaz:
http://arxiv.org/abs/2302.08391
In this paper, we construct a bijection from a set of bounded free Motzkin paths to a set of bounded Motzkin prefixes that induces a bijection from a set of bounded free Dyck paths to a set of bounded Dyck prefixes. We also give bijections between a
Externí odkaz:
http://arxiv.org/abs/2205.15554
Simultaneous bar-cores, core shifted Young diagrams (or CSYDs), and doubled distinct cores have been studied since Morris and Yaseen introduced the concept of bar-cores. In this paper, our goal is to give a formula for the number of these core partit
Externí odkaz:
http://arxiv.org/abs/2205.01894
Given a positive integer $r$ and a prime power $q$, we estimate the probability that the characteristic polynomial $f_{A}(t)$ of a random matrix $A$ in $\mathrm{GL}_{n}(\mathbb{F}_{q})$ is square-free with $r$ (monic) irreducible factors when $n$ is
Externí odkaz:
http://arxiv.org/abs/2005.07846
Autor:
Adeniran, Ayomikun, Butler, Steve, Dorpalen-Barry, Galen, Harris, Pamela E., Hettle, Cyrus, Liang, Qingzhong, Martin, Jeremy L., Nam, Hayan
Publikováno v:
Electron. J. Combin. 27(2) (2020), #P2.44
Given a strictly increasing sequence $\mathbf{t}$ with entries from $[n]:=\{1,\ldots,n\}$, a parking completion is a sequence $\mathbf{c}$ with $|\mathbf{t}|+|\mathbf{c}|=n$ and $|\{t\in \mathbf{t}\mid t\le i\}|+|\{c\in \mathbf{c}\mid c\le i\}|\ge i$
Externí odkaz:
http://arxiv.org/abs/1912.01688
Publikováno v:
In Discrete Mathematics July 2023 346(7)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Adeniran, Ayomikun, Butler, Steve, Defant, Colin, Gao, Yibo, Harris, Pamela E., Hettle, Cyrus, Liang, Qingzhong, Nam, Hayan, Volk, Adam
We find a relation between the genus of a quotient of a numerical semigroup $S$ and the genus of $S$ itself. We use this identity to compute the genus of a quotient of $S$ when $S$ has embedding dimension $2$. We also exhibit identities relating the
Externí odkaz:
http://arxiv.org/abs/1809.09360
In two papers, Little and Sellers introduced an exciting new combinatorial method for proving partition identities which is not directly bijective. Instead, they consider various sets of weighted tilings of a $1 \times \infty$ board with squares and
Externí odkaz:
http://arxiv.org/abs/1807.09344
Publikováno v:
In Linear Algebra and Its Applications 15 December 2022 655:100-128