Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Najdanović Marija"'
Autor:
Maksimović Miroslav D., Rančić Svetozar R., Najdanović Marija S., Velimirović Ljubica S., Ljajko Eugen S.
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 31, Iss 1, Pp 181-197 (2023)
The article deals with the infinitesimal bending theory application to the knots theory. The impact of infinitesimal bending on the torsional energy at torus knots is considered, and the results show that it is not stationary under infinitesimal bend
Externí odkaz:
https://doaj.org/article/7a81130b5c154e5fb767eb031f5928f0
Publikováno v:
Bulletin of Natural Sciences Research, Vol 11, Iss 1, Pp 38-43 (2021)
Infinitesimal bending of curves lying with a given precision on ruled surfaces in 3-dimensional Euclidean space is studied. In particular, the bending of curves on the cylinder, the hyperbolic paraboloid and the helicoid are considered and appropriat
Externí odkaz:
https://doaj.org/article/11155f9c14b94c0f973b800dac243c9e
Autor:
Najdanović Marija, Velimirović Ljubica
Publikováno v:
The University Thought: Publication in Natural Sciences, Vol 8, Iss 1, Pp 46-51 (2018)
In this paper we study infinitesimal bending of curves that lie on the ruled surfaces in Euclidean 3-dimensional space. We obtain an infinitesimal bending field under whose effect all bent curves remain on the same ruled surface as the initial curve.
Externí odkaz:
https://doaj.org/article/2a76be5eed8048beb42a36c3843e6436
Autor:
Najdanović Marija S.
Publikováno v:
Sinteze, Vol 1, Iss 2, Pp 61-72 (2012)
In this paper we analyse the relation as a mathematical concept. We discuss the following properties of relations: reflexivity, symmetry, antisimmetry and transitivity and define equivalence relations and order relations . We give a methodical approa
Externí odkaz:
https://doaj.org/article/7ab1c2f52cff4716a29c55b618f4ac52
Publikováno v:
Journal of Knot Theory and Its Ramifications Vol. 28, No. 11 (2019) 1940009 (15 pages)
We discuss infinitesimal bending of curves and knots in R^{3}. A brief overview of the results on the infinitesimal bending of curves is outlined. Change of the Willmore energy, as well as of the Mobius energy under infinitesimal bending of knots is
Externí odkaz:
http://arxiv.org/abs/2003.07024
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2021 Oct 01. 15(2), 283-294.
Externí odkaz:
https://www.jstor.org/stable/27090830
Publikováno v:
Axioms (2075-1680); Oct2024, Vol. 13 Issue 10, p661, 15p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Czechoslovak Mathematical Journal, 64 (139) (2014), 1113-1122
In the present paper a generalized K\"ahlerian space $\mathbb{G}\underset 1 {\mathbb{K}}{}_N$ of the first kind is considered, as a generalized Riemannian space $\mathbb{GR}_N$ with almost complex structure $F^h_i$, that is covariantly constant with
Externí odkaz:
http://arxiv.org/abs/1305.3776