Zobrazeno 1 - 10
of 1 351
pro vyhledávání: '"Najafi, H."'
Autor:
Najafi, H., Abdollahi, F.
To each finite frame $\varphi$ in an inner product space $\mathcal{H}$ we associate a simple graph $G(\varphi)$, called {\it frame graph}, with the vectors of the frame as vertices and there is an edge between vertices $f$ and $g$ provided that $\lan
Externí odkaz:
http://arxiv.org/abs/2201.01640
Publikováno v:
In Journal of Materials Research and Technology May-June 2022 18:2932-2944
Publikováno v:
Hokkaido Math. J. 45 (2016) , 325-336
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for o
Externí odkaz:
http://arxiv.org/abs/1610.04165
Publikováno v:
In Materials Science & Engineering A 7 January 2021 800
Publikováno v:
In Materials Science & Engineering A 19 August 2020 793
Autor:
Najafi, H.
Publikováno v:
In Linear Algebra and Its Applications 1 March 2020 588:489-496
Publikováno v:
In Journal of Ocean Engineering and Science December 2019 4(4):299-307
Autor:
Najafi, H., Moslehian, M. S.
Publikováno v:
Studia Math. 215 (2013), 31-37
We investigate the deformation of involution and multiplication in a unital $C^*$-algebra when its norm is fixed. Our main result is to present all multiplications and involutions on a given $C^*$-algebra $\mathcal{A}$ under which $\mathcal{A}$ is st
Externí odkaz:
http://arxiv.org/abs/1304.8091
Publikováno v:
C. R. Math. Acad. Sci. Paris, 350 (2012), no. 7-8, 407-410
Given self-adjoint operators $A, B\in\mathbb{B}(\mathscr{H})$ it is said $A\leq_uB$ whenever $A\leq U^*BU$ for some unitary operator $U$. We show that $A\leq_u B$ if and only if $f(g(A)^r)\leq_uf(g(B)^r)$ for any increasing operator convex function $
Externí odkaz:
http://arxiv.org/abs/1204.2222
Autor:
Moslehian, M. S., Najafi, H.
Publikováno v:
Integral Equations Operator Theory 71 (2011), no. 4, 575-582
We show that the symmetrized product $AB+BA$ of two positive operators $A$ and $B$ is positive if and only if $f(A+B)\leq f(A)+f(B)$ for all non-negative operator monotone functions $f$ on $[0,\infty)$ and deduce an operator inequality. We also give
Externí odkaz:
http://arxiv.org/abs/1110.6594