Zobrazeno 1 - 10
of 397
pro vyhledávání: '"Nair, Vinod"'
We propose an incomplete algorithm for Maximum Satisfiability (MaxSAT) specifically designed to run on neural network accelerators such as GPUs and TPUs. Given a MaxSAT problem instance in conjunctive normal form, our procedure constructs a Restricte
Externí odkaz:
http://arxiv.org/abs/2311.02101
Autor:
Schaarschmidt, Michael, Grewe, Dominik, Vytiniotis, Dimitrios, Paszke, Adam, Schmid, Georg Stefan, Norman, Tamara, Molloy, James, Godwin, Jonathan, Rink, Norman Alexander, Nair, Vinod, Belov, Dan
The rapid rise in demand for training large neural network architectures has brought into focus the need for partitioning strategies, for example by using data, model, or pipeline parallelism. Implementing these methods is increasingly supported thro
Externí odkaz:
http://arxiv.org/abs/2112.02958
Large Neighborhood Search (LNS) is a combinatorial optimization heuristic that starts with an assignment of values for the variables to be optimized, and iteratively improves it by searching a large neighborhood around the current assignment. In this
Externí odkaz:
http://arxiv.org/abs/2107.10201
Autor:
Nair, Vinod, Bartunov, Sergey, Gimeno, Felix, von Glehn, Ingrid, Lichocki, Pawel, Lobov, Ivan, O'Donoghue, Brendan, Sonnerat, Nicolas, Tjandraatmadja, Christian, Wang, Pengming, Addanki, Ravichandra, Hapuarachchi, Tharindi, Keck, Thomas, Keeling, James, Kohli, Pushmeet, Ktena, Ira, Li, Yujia, Vinyals, Oriol, Zwols, Yori
Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics developed with decades of research to solve large-scale MIP instances encountered in practice. Machine learning offers to automatically construct better heuristics f
Externí odkaz:
http://arxiv.org/abs/2012.13349
Prioritized Unit Propagation with Periodic Resetting is (Almost) All You Need for Random SAT Solving
We propose prioritized unit propagation with periodic resetting, which is a simple but surprisingly effective algorithm for solving random SAT instances that are meant to be hard. In particular, an evaluation on the Random Track of the 2017 and 2018
Externí odkaz:
http://arxiv.org/abs/1912.05906
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Paliwal, Aditya, Gimeno, Felix, Nair, Vinod, Li, Yujia, Lubin, Miles, Kohli, Pushmeet, Vinyals, Oriol
We present a deep reinforcement learning approach to minimizing the execution cost of neural network computation graphs in an optimizing compiler. Unlike earlier learning-based works that require training the optimizer on the same graph to be optimiz
Externí odkaz:
http://arxiv.org/abs/1905.02494
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nair, Vinod S., Heybroek, Mari, Boyle, Emily, Rogers, Mason, Campbell, Thane, Eichner, Daniel, Hill, Kevin
Publikováno v:
Drug Testing & Analysis; Oct2024, Vol. 16 Issue 10, p1122-1126, 5p
Autor:
Zgrzebnicki, Michal, Nair, Vinod, Mitra, Shantanu, Kałamaga, Agnieszka, Przepiórski, Jacek, Wrobel, Rafal J.
Publikováno v:
In Chemical Engineering Journal 1 January 2022 427