Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Naidu, Deepak"'
Autor:
Bruillard, Paul, Galindo, César, Hong, Seung-Moon, Kashina, Yevgenia, Naidu, Deepak, Natale, Sonia, Plavnik, Julia Yael, Rowell, Eric. C.
We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of
Externí odkaz:
http://arxiv.org/abs/1303.4748
Autor:
Naidu, Deepak
Publikováno v:
Pacific J. Math. 268 (2014) 173-204
We generalize quantum Drinfeld Hecke algebras by incorporating a 2-cocycle on the associated finite group. We identify these algebras as specializations of deformations of twisted skew group algebras, giving an explicit connection to Hochschild cohom
Externí odkaz:
http://arxiv.org/abs/1208.1671
Autor:
Naidu, Deepak
Publikováno v:
Pacific J. Math. 247 (2010), no. 2, 477-496
We propose the notion of quasi-abelian third cohomology of crossed modules, generalizing Eilenberg and MacLane's abelian cohomology and Ospel's quasi-abelian cohomology, and classify crossed pointed categories in terms of it. We apply the process of
Externí odkaz:
http://arxiv.org/abs/1111.5246
Autor:
Naidu, Deepak, Witherspoon, Sarah
Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hoc
Externí odkaz:
http://arxiv.org/abs/1111.5243
Publikováno v:
Proc. Amer. Math. Soc. 139 (2011), 1553-1567
Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When
Externí odkaz:
http://arxiv.org/abs/0911.3696
Publikováno v:
Algebra Number Theory 3 (2009), no. 8, 959-990
Let C be a fusion category faithfully graded by a finite group G and let D be the trivial component of this grading. The center Z(C) of C is shown to be canonically equivalent to a G-equivariantization of the relative center Z_D(C). We use this resul
Externí odkaz:
http://arxiv.org/abs/0905.3117
Autor:
Naidu, Deepak, Rowell, Eric C.
Publikováno v:
Algebr. and Represent. Theor. 14 (2011), no. 5, 837-855
We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has F if the associa
Externí odkaz:
http://arxiv.org/abs/0903.4157
Publikováno v:
Int. Math. Res. Not. (2009), no. 22, 4183-4219
We describe all fusion subcategories of the representation category of a twisted quantum double of a finite group. In view of the fact that every group-theoretical braided fusion category can be embedded into a representation category of a twisted qu
Externí odkaz:
http://arxiv.org/abs/0810.0032
Autor:
Gelaki, Shlomo, Naidu, Deepak
Publikováno v:
J. Algebra 322 (2009), no. 8, 2631-2641
We first show that every group-theoretical category is graded by a certain double coset ring. As a consequence, we obtain a necessary and sufficient condition for a group-theoretical category to be nilpotent. We then give an explicit description of t
Externí odkaz:
http://arxiv.org/abs/0709.4326
Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups
Autor:
Naidu, Deepak, Nikshych, Dmitri
Publikováno v:
Comm. Math. Phys. 279 (2008), 845-872.
We classify Lagrangian subcategories of the representation category of a twisted quantum double of a finite group. In view of results of 0704.0195v2 this gives a complete description of all braided tensor equivalent pairs of twisted quantum doubles o
Externí odkaz:
http://arxiv.org/abs/0705.0665