Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Nagy, D��niel"'
Autor:
Nagy, D��niel T., Patk��s, Bal��zs
We prove the following the generalized Tur\'an type result. A collection $\mathcal{T}$ of $r$ sets is an $r$-triangle if for every $T_1,T_2,\dots,T_{r-1}\in \mathcal{T}$ we have $\cap_{i=1}^{r-1}T_i\neq\emptyset$, but $\cap_{T\in \mathcal{T}}T$ is em
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22032d583ad5ff0f5e738c03ba62f009
http://arxiv.org/abs/2201.02452
http://arxiv.org/abs/2201.02452
Autor:
Nagy, D��niel, Patk��s, Bal��zs
We consider the problem of determining the maximum number of pairs $F\subseteq F'$ in a family $\mathcal{F}\subseteq 2^{[n]}$ that avoids certain posets $P$ of height 2. We show that for any such $P$ the number of pairs is $O(n\binom{n}{\lfloor n/2\r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cad2eda01f6db4064d6d0ae159cff29a
http://arxiv.org/abs/2108.10301
http://arxiv.org/abs/2108.10301
For posets $P$ and $Q$, extremal and saturation problems about weak and strong $P$-free subposets of $Q$ have been studied mostly in the case $Q$ is the Boolean poset $Q_n$, the poset of all subsets of an $n$-element set ordered by inclusion. In this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::429d0772f4b88e843409b66d8f664b8e
http://arxiv.org/abs/2102.08297
http://arxiv.org/abs/2102.08297
For given posets $P$ and $Q$ and an integer $n$, the generalized Tur��n problem for posets, asks for the maximum number of copies of $Q$ in a $P$-free subset of the $n$-dimensional Boolean lattice, $2^{[n]}$. In this paper, among other results, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::74c653bf6d9248ae966a66cca5b2a8fa
In this paper, the performance characteristics of different solution techniques and program packages to solve a large number of independent ordinary differential equation systems is examined. The employed hardware are an Intel Core i7-4820K CPU with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5161797368ebc31c4715520a54c7048
http://arxiv.org/abs/2011.01740
http://arxiv.org/abs/2011.01740
A Berge-path of length $k$ in a hypergraph $\mathcal{H}$ is a sequence $v_1,e_1,v_2,e_2,\dots,v_{k},e_k,v_{k+1}$ of distinct vertices and hyperedges with $v_{i+1}\in e_i,e_{i+1}$ for all $i\in[k]$. F\"uredi, Kostochka and Luo, and independently Gy\H{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0075343be87ae6a08ad675e124fa31bf
http://arxiv.org/abs/2008.02780
http://arxiv.org/abs/2008.02780
Autor:
Gerbner, D��niel, Methuku, Abhishek, Nagy, D��niel T., P��lv��lgyi, D��m��t��r, Tardos, G��bor, Vizer, M��t��
In this paper we initiate a systematic study of the Tur��n problem for edge-ordered graphs. A simple graph is called $\textit{edge-ordered}$, if its edges are linearly ordered. An isomorphism between edge-ordered graphs must respect the edge-orde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0e99542ebcbc4bc666c4f8c4fc988a43
Bitcoin's Lightning Network (LN) is a scalability solution for Bitcoin allowing transactions to be issued with negligible fees and settled instantly at scale. In order to use LN, funds need to be locked in payment channels on the Bitcoin blockchain (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2d7f79330e635cc4333b7e2ee3a9e245
In this short note we consider the oriented vertex Tur��n problem in the hypercube: for a fixed oriented graph $\overrightarrow{F}$, determine the maximum size $ex_v(\overrightarrow{F}, \overrightarrow{Q_n})$ of a subset $U$ of the vertices of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51142108e176289daff11446cbf6fa4e
The vertex set of the Kneser graph $K(n,k)$ is $V = \binom{[n]}{k}$ and two vertices are adjacent if the corresponding sets are disjoint. For any graph $F$, the largest size of a vertex set $U \subseteq V$ such that $K(n,k)[U]$ is $F$-free, was recen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3c4367ccf522d434e2c3ec512d0f9cd9