Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Nagpal, Sumit"'
For $n\geq 4$ (even), the function $\varphi_{n\mathcal{L}}(z)=1+nz/(n+1)+z^n/(n+1)$ maps the unit disk $\mathbb{D}$ onto a domain bounded by an epicycloid with $n-1$ cusps. In this paper, the class $\mathcal{S}^*_{n\mathcal{L}} = \mathcal{S}^*(\varph
Externí odkaz:
http://arxiv.org/abs/2104.00907
Some differential implications of classical Marx-Strohh\"acker theorem are extended for multivalent functions. These results are also generalized for functions with fixed second coefficient by using the theory of first order differential subordinatio
Externí odkaz:
http://arxiv.org/abs/2103.11711
Sufficient conditions are determined on the parameters such that the generalized and normalized Bessel function of the first kind and other related functions belong to subclasses of starlike and convex functions defined in the unit disk associated wi
Externí odkaz:
http://arxiv.org/abs/2101.06045
By considering the polynomial function $\phi_{car}(z)=1+z+z^2/2,$ we define the class $\Scar$ consisting of normalized analytic functions $f$ such that $zf'/f$ is subordinate to $\phi_{car}$ in the unit disk. The inclusion relations and various radii
Externí odkaz:
http://arxiv.org/abs/2012.13511
Sufficient conditions are obtained on the parameters of Lommel function of the first kind, generalized Struve function of the first kind and the confluent hypergeometric function under which these special functions become exponential convex and expon
Externí odkaz:
http://arxiv.org/abs/1908.07266
Given a domain $\Omega$ in the complex plane $\mathbb{C}$ and a univalent function $q$ defined in an open unit disk $\mathbb{D}$ with nice boundary behaviour, Miller and Mocanu studied the class of admissible functions $\Psi(\Omega,q)$ so that the di
Externí odkaz:
http://arxiv.org/abs/1902.02473
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nagpal, Sumit, Ravichandran, V.
Let $\mathcal{H}$ denote the class of all complex-valued harmonic functions $f$ in the open unit disk normalized by $f(0)=0=f_{z}(0)-1=f_{\bar{z}}(0)$, and let $\mathcal{A}$ be the subclass of $\mathcal{H}$ consisting of normalized analytic functions
Externí odkaz:
http://arxiv.org/abs/1302.5791
Autor:
Nagpal, Sumit, Ravichandran, V.
For given two harmonic functions $\Phi$ and $\Psi$ with real coefficients in the open unit disk $\mathbb{D}$, we study a class of harmonic functions $f(z)=z-\sum_{n=2}^{\infty}A_nz^{n}+\sum_{n=1}^{\infty}B_n\bar{z}^n$ $(A_n, B_n \geq 0)$ satisfying \
Externí odkaz:
http://arxiv.org/abs/1301.2746