Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Nagpal, Rohit"'
Autor:
Nagpal, Rohit, Georgi, Gina, Knauth, Sarah, Schmid-Herrmann, Carmen, Muschol, Nicole, Braulke, Thomas, Kahl-Nieke, Bärbel, Amling, Michael, Schinke, Thorsten, Koehne, Till, Petersen, Julian
Mucopolysaccharidosis VI (MPS VI) is a hereditary lysosomal storage disease caused by the absence of the enzyme arylsulfatase B (ARSB). Craniofacial defects are common in MPS VI patients and manifest as abnormalities of the facial bones, teeth, and t
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A93071
https://ul.qucosa.de/api/qucosa%3A93071/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A93071/attachment/ATT-0/
Autor:
Nagpal, Rohit, Snowden, Andrew
Let $R=\mathbf{C}[\xi_1,\xi_2,\ldots]$ be the infinite variable polynomial ring, equipped with the natural action of the infinite symmetric group $\mathfrak{S}$. We classify the $\mathfrak{S}$-primes of $R$, determine the containments among these ide
Externí odkaz:
http://arxiv.org/abs/2107.13027
Publikováno v:
Alg. Number Th. 16 (2022) 1501-1529
The space of $n \times m$ complex matrices can be regarded as an algebraic variety on which the group ${\bf GL}_n \times {\bf GL}_m$ acts. There is a rich interaction between geometry and representation theory in this example. In an important paper,
Externí odkaz:
http://arxiv.org/abs/2101.10422
Autor:
Nagpal, Rohit, Snowden, Andrew
We classify the subvarieties of infinite dimensional affine space that are stable under the infinite symmetric group. We determine the defining equations and point sets of these varieties as well as the containments between them.
Externí odkaz:
http://arxiv.org/abs/2011.09009
Publikováno v:
Trans. Amer. Math. Soc. 374 (2021), 5677-5696
We show that $\bigoplus_{n \ge 0} {\mathrm H}^t({\bf GL}_n({\bf F}_q), {\bf F}_\ell)$ canonically admits the structure of a module over the $q$-divided power algebra (assuming $q$ is invertible in ${\bf F}_{\ell}$), and that, as such, it is free and
Externí odkaz:
http://arxiv.org/abs/1910.05690
Autor:
Nagpal, Rohit, Snowden, Andrew
We study the category $\mathcal{A}$ of smooth semilinear representations of the infinite symmetric group over the field of rational functions in infinitely many variables. We establish a number of results about the structure of $\mathcal{A}$, e.g., c
Externí odkaz:
http://arxiv.org/abs/1909.08753
Autor:
Nagpal, Rohit
We classify all irreducible generic $\mathrm{VI}$-modules in non-describing characteristic. Our result degenerates to yield a classification of irreducible generic $\mathrm{FI}$-modules in arbitrary characteristic. Our result can also be viewed as a
Externí odkaz:
http://arxiv.org/abs/1810.04592
Publikováno v:
Compositio Math. 156 (2020) 822-861
We prove a representation stability result for the codimension-one cohomology of the level three congruence subgroup of $\mathbf{SL}_n(\mathbb{Z})$. This is a special case of a question of Church-Farb-Putman which we make more precise. Our methods in
Externí odkaz:
http://arxiv.org/abs/1806.11131
Autor:
Nagpal, Rohit
Publikováno v:
Alg. Number Th. 13 (2019) 2151-2189
Let $\mathrm{VI}$ be the category of finite dimensional $\mathbb{F}_q$-vector spaces whose morphisms are injective linear maps, and let $\mathbf{k}$ be a noetherian ring. We study the category of functors from $\mathrm{VI}$ to $\mathbf{k}$-modules in
Externí odkaz:
http://arxiv.org/abs/1709.07591
We prove two general results concerning spectral sequences of $\mathbf{FI}$-modules. These results can be used to significantly improve stable ranges in a large portion of the stability theorems for $\mathbf{FI}$-modules currently in the literature.
Externí odkaz:
http://arxiv.org/abs/1706.03845