Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Nagase, Teruo"'
Autor:
Nagase, Teruo, Shima, Akiko
Charts are oriented labeled graphs in a disk. Any simple surface braid (2-dimensional braid) can be described by using a chart. Also, a chart represents an oriented closed surface embedded in 4-space. In this paper, we investigate embedded surfaces i
Externí odkaz:
http://arxiv.org/abs/2405.05262
Autor:
Nagase, Teruo, Shima, Akiko
Charts are oriented labeled graphs in a disk. Any simple surface braid (2-dimensional braid) can be described by using a chart. Also, a chart represents an oriented closed surface embedded in 4-space. In this paper, we investigate embedded surfaces i
Externí odkaz:
http://arxiv.org/abs/2406.12865
Autor:
Nagase, Teruo, Shima, Akiko
Charts are oriented labeled graphs in a disk. Any simple surface braid (2-dimensional braid) can be described by using a chart. Also, a chart represents an oriented closed surface (called a surface-link) embedded in 4-space. In this paper, we investi
Externí odkaz:
http://arxiv.org/abs/2304.05532
Autor:
Nagase, Teruo, Shima, Akiko
Charts are oriented labeled graphs in a disk. Any simple surface braid (2-dimensonal braid) can be described by using a chart. Also, a chart represents an oriented closed surface embedded in 4-space. In this paper, we investigate embedded surfaces in
Externí odkaz:
http://arxiv.org/abs/2207.11715
Autor:
Nagase, Teruo, Shima, Akiko
Let $\Gamma$ be a chart, and we denote by $\Gamma_m$ the union of all the edges of label $m$. A chart $\Gamma$ is of type $(7)$ if there exists a label $m$ such that $w(\Gamma)=7$, $w(\Gamma_m\cap\Gamma_{m+1})=7$ where $w(G)$ is the number of white v
Externí odkaz:
http://arxiv.org/abs/2110.10467
Autor:
Nagase, Teruo, Shima, Akiko
Let $\Gamma$ be a chart, and we denote by $\Gamma_m$ the union of all the edges of label $m$. A chart $\Gamma$ is of type $(2,3,2)$ if there exists a label $m$ such that $w(\Gamma)=7$, $w(\Gamma_m\cap\Gamma_{m+1})=2$, $w(\Gamma_{m+1}\cap\Gamma_{m+2})
Externí odkaz:
http://arxiv.org/abs/2003.12188
Autor:
Nagase, Teruo, Shima, Akiko
Let $\Gamma$ be a chart, and we denote by $\Gamma_m$ the union of all the edges of label $m$. A chart $\Gamma$ is of type $(m;2,3,2)$ if $w(\Gamma)=7$, $w(\Gamma_m\cap\Gamma_{m+1})=2$, $w(\Gamma_{m+1}\cap\Gamma_{m+2})=3$, and $w(\Gamma_{m+2}\cap\Gamm
Externí odkaz:
http://arxiv.org/abs/2003.11909
Autor:
Nagase, Teruo, Shima, Akiko
Publikováno v:
In Indagationes Mathematicae July 2023 34(4):673-723
Autor:
Nagase, Teruo, Shima, Akiko
Let $\Gamma$ be a chart, and we denote by $\Gamma_m$ the union of all the edges of label $m$. A chart $\Gamma$ is of type $(3,2,2)$ if there exists a label $m$ such that $w(\Gamma)=7$, $w(\Gamma_m\cap\Gamma_{m+1})=3$, $w(\Gamma_{m+1}\cap\Gamma_{m+2})
Externí odkaz:
http://arxiv.org/abs/1902.00007
Autor:
Nagase, Teruo, Shima, Akiko
Given a 2-crossing minimal chart $\Gamma$, a minimal chart with two crossings, set $\alpha=\min\{~i~|~$there exists an edge of label $i$ containing a white vertex$\}$, and $\beta=\max\{~i~|~$there exists an edge of label $i$ containing a white vertex
Externí odkaz:
http://arxiv.org/abs/1709.08827