Zobrazeno 1 - 10
of 96
pro vyhledávání: '"Nagórko, A."'
Autor:
Bell, G. C., Nagórko, A.
Property A is a form of weak amenability for groups and metric spaces introduced as an approach to the famous Novikov higher signature conjecture, one of the most important unsolved problems in topology. We show that property A can be reduced to a se
Externí odkaz:
http://arxiv.org/abs/2109.04891
Autor:
Bell, G. C., Nagórko, A.
We develop a formalism that allows us to describe Markov compacta with finite sets of diagrams that are building blocks of the entire sequence. This encodes complex, continuous spaces with discrete collections of combinatorial objects. We show that t
Externí odkaz:
http://arxiv.org/abs/1711.08227
Autor:
Nagórko, A.
We construct and embedding of a N\"obeling space $N^n_{n-2}$ of codimension $2$ into a Menger space $M^n_{n-2}$ of codimension $2$. This solves an open problem stated by R.~Engelking in 1978 in codimension~$2$.
Externí odkaz:
http://arxiv.org/abs/1712.03181
Autor:
Bell, G. C., Nagórko, A.
We provide an easily verifiable condition for local $k$-connectedness of an inverse limit of polyhedra.
Externí odkaz:
http://arxiv.org/abs/1712.03180
Autor:
Bell, G. C., Nagórko, A.
For each cardinal $\kappa$, each natural number $n$ and each simplicial complex $K$ we construct a space $\nu^n_\kappa(K)$ and a map $\pi \colon \nu^n_\kappa(K) \to K$ such that the following conditions are satisfied. 1. $\nu^n_\kappa(K)$ is a comple
Externí odkaz:
http://arxiv.org/abs/1712.03179
We combine aspects of the notions of finite decomposition complexity and asymptotic property C into a notion that we call finite APC-decomposition complexity. Any space with finite decomposition complexity has finite APC-decomposition complexity and
Externí odkaz:
http://arxiv.org/abs/1709.01119
Autor:
Bell, G. C., Nagórko, A.
Publikováno v:
Topology and its Applications Volume 160, Issue 1, Pages 159-169 (2013)
For each $n$, we construct a separable metric space $\mathbb{U}_n$ that is universal in the coarse category of separable metric spaces with asymptotic dimension ($\mathop{asdim}$) at most $n$ and universal in the uniform category of separable metric
Externí odkaz:
http://arxiv.org/abs/1708.03455
Autor:
Bell, G., Nagórko, A.
Publikováno v:
Algebr. Geom. Topol. 18 (2018) 221-245
We show that Dranishnikov's asymptotic property C is preserved by direct products and the free product of discrete metric spaces. In particular, if $G$ and $H$ are groups with asymptotic property C, then both $G \times H$ and $G * H$ have asymptotic
Externí odkaz:
http://arxiv.org/abs/1607.05181
The coarse category was established by Roe to distill the salient features of the large-scale approach to metric spaces and groups that was started by Gromov. In this paper, we use the language of coarse spaces to define coarse versions of asymptotic
Externí odkaz:
http://arxiv.org/abs/1604.02405
Autor:
Nagórko, Alicja
Publikováno v:
Prace Filologiczne / Philological Studies. 76(1):387-400
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1036420