Zobrazeno 1 - 10
of 21 521
pro vyhledávání: '"Nafi AS"'
Autor:
Maden, Fahri
Publikováno v:
Edeb Erkan (EE). 2023, Issue 3, p1-70. 70p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nafi, Abdullah al Nomaan, Hossain, Md. Alamgir, Rifat, Rakib Hossain, Zaman, Md Mahabub Uz, Ahsan, Md Manjurul, Raman, Shivakumar
Data scarcity in medical imaging poses significant challenges due to privacy concerns. Diffusion models, a recent generative modeling technique, offer a potential solution by generating synthetic and realistic data. However, questions remain about th
Externí odkaz:
http://arxiv.org/abs/2412.16860
Autor:
Tariquzzaman, Md., Anam, Audwit Nafi, Haque, Naimul, Kabir, Mohsinul, Mahmud, Hasan, Hasan, Md Kamrul
Data augmentation involves generating synthetic samples that resemble those in a given dataset. In resource-limited fields where high-quality data is scarce, augmentation plays a crucial role in increasing the volume of training data. This paper intr
Externí odkaz:
http://arxiv.org/abs/2412.08753
This study evaluates the concordance between RNA sequencing (RNA-Seq) and NanoString technologies for gene expression analysis in non-human primates (NHPs) infected with Ebola virus (EBOV). We performed a detailed comparison of both platforms, demons
Externí odkaz:
http://arxiv.org/abs/2410.23433
Autor:
Ware, Rudolph
Publikováno v:
Islamic Africa, 2013 Oct 01. 4(2), 225-248.
Externí odkaz:
https://www.jstor.org/stable/islamicafrica.4.2.225
Autor:
Johnson, W. Stanfield
Publikováno v:
Public Contract Law Journal, 2012 Oct 01. 42(1), 43-67.
Externí odkaz:
https://www.jstor.org/stable/24430298
Autor:
Zoldan, Evan C.
Publikováno v:
Public Contract Law Journal, 2007 Jan 01. 36(2), 153-174.
Externí odkaz:
https://www.jstor.org/stable/25755402
Publikováno v:
Il Foro Italiano, 2001 Feb 01. 124(2), 631/632-633/634.
Externí odkaz:
https://www.jstor.org/stable/23197560
Autor:
Rezapour, Mostafa, Niazi, Muhammad Khalid Khan, Lu, Hao, Narayanan, Aarthi, Gurcan, Metin Nafi
This study introduces the Supervised Magnitude-Altitude Scoring (SMAS) methodology, a machine learning-based approach, for analyzing gene expression data obtained from nonhuman primates (NHPs) infected with Ebola virus (EBOV). We utilize a comprehens
Externí odkaz:
http://arxiv.org/abs/2401.08738