Zobrazeno 1 - 10
of 162
pro vyhledávání: '"Nadeem Ur Rehman"'
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Pp 1-11 (2024)
Let [Formula: see text], where p is an odd prime and r is a positive integer. Consider a ring [Formula: see text], where [Formula: see text] with [Formula: see text] and [Formula: see text] with [Formula: see text]. In this paper, we examine the alge
Externí odkaz:
https://doaj.org/article/3871af092db442738d9d95d9ddf9a6f9
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 3, Pp 302-309 (2024)
In this article, we find the Randić spectrum of the weakly zero-divisor graph of a finite commutative ring [Formula: see text] with identity [Formula: see text], denoted as [Formula: see text], where [Formula: see text] is taken as the ring of integ
Externí odkaz:
https://doaj.org/article/73f42b2bf66e4bd18889a67e51e8ceb5
Publikováno v:
AIMS Mathematics, Vol 9, Iss 8, Pp 21596-21608 (2024)
Let $ \mathcal{A} $ be a unital $ \ast $-algebra containing a non-trivial projection. In this paper, we prove that if a map $ \Omega $ : $ \mathcal{A} $ $ \to $ $ \mathcal{A} $ such that$ \begin{equation} \nonumber \Omega( [ \mathscr{K}, \mathscr{F}]
Externí odkaz:
https://doaj.org/article/8e3a0fa88fd44880b20deb31b6523564
Autor:
Mohd Arif Raza, Mohammad Fareed Ahmad, Adel Alahmadi, Widyan Basaffar, Manish K. Gupta, Nadeem ur Rehman, Abdul Nadim Khan, Hatoon Shoaib, Patrick Sole
Publikováno v:
Axioms, Vol 13, Iss 10, p 697 (2024)
The main focus of this paper is to analyze the algebraic structure of constacyclic codes over the ring R=Fp+w1Fp+w2Fp+w22Fp+w1w2Fp+w1w22Fp, where w12−α2=0, w1w2=w2w1, w23−β2w2=0, and α,β∈Fp∖{0}, for a prime p. We begin by introducing a Gr
Externí odkaz:
https://doaj.org/article/bbc2e9b7c3e3410a82112c3685547684
Autor:
Nadeem ur Rehman, Hafedh M. Alnoghashi
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
This paper's primary goal is to look at a quotient ring $\mathscr{A}/\mathscr{T}$ structure, where $\mathscr{A}$ is an arbitrary ring and $\mathscr{T}$ is a semi-prime ideal of $\mathscr{A}$. More precisely, we examine the differential identities in
Externí odkaz:
https://doaj.org/article/a5e014fff8894ba5b2066bdaff40355d
Publikováno v:
Axioms, Vol 13, Iss 10, p 669 (2024)
This paper investigates the relationship between the commutativity of rings and the properties of their multiplicative generalized derivations. Let F be a ring with a semiprime ideal Π. A map ϕ:F→F is classified as a multiplicative generalized de
Externí odkaz:
https://doaj.org/article/c2010588ff784de38573759cec2240a0
Publikováno v:
Mathematics, Vol 12, Iss 18, p 2818 (2024)
This paper examines the commutativity of the quotient ring F/Y by utilizing specific differential identities in a general ring F that contains a semiprime ideal Y. This study particularly focuses on the role of a multiplicative generalized semideriva
Externí odkaz:
https://doaj.org/article/80d6383ad0024d25b48b278ff6180d83
Publikováno v:
Axioms, Vol 13, Iss 7, p 448 (2024)
We introduce center-like subsets Z∘*(A,d),Z∘**(A,d), where A is the ring and d is the multiplicative derivation. In the following, we take a new derivation for the center-like subsets existing in the literature and establish the relations between
Externí odkaz:
https://doaj.org/article/cdf6027cd8b1432b97df5c3f113051fc
Publikováno v:
Mathematics, Vol 12, Iss 9, p 1403 (2024)
This paper concentrates on examining the characterization of nonlinear mixed bi-skew Lie triple ∗- derivations within an ∗-algebra denoted by A which contains a nontrivial projection with a unit I. Additionally, we expand this investigation to ap
Externí odkaz:
https://doaj.org/article/309902c01c884bcb9dd3bdaac834dc91
Publikováno v:
Mathematics, Vol 11, Iss 20, p 4310 (2023)
For a finite commutative ring R with identity 1≠0, the weakly zero-divisor graph of R denoted as WΓ(R) is a simple undirected graph having vertex set as a set of non-zero zero-divisors of R and two distinct vertices a and b are adjacent if and onl
Externí odkaz:
https://doaj.org/article/604848ab3daa4dc59ba45512df2b9d1a