Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Nada Kasm Yahya"'
Autor:
dakheel Elias, Nada Kasm Yahya
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 17, Iss 2, Pp 63-77 (2023)
The main aim of this work is to find new codes arising from construct a complete (k , n) – arcs in PG( 3,17), when n = 3,4,5 we take the union of some (k,n) – arcs. Furhtermore, when n = 6,7,8,…,307 by using matlab19B program (1) to found all c
Externí odkaz:
https://doaj.org/article/bfce65d9d9dc4a1189c747d2cc1f0225
Autor:
Hamid khalaf, Nada Kasm Yahya
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 16, Iss 1, Pp 137-147 (2022)
The main goal of this work is to find a spread of PG(3,13). By construct a complete span which represents applications of algebraic geometry in 3-dimensional projective space PG(3,q). We prove that the maximum (Ƙ,b)-span in PG(3,13) is (170,b)-sp -s
Externí odkaz:
https://doaj.org/article/0be18844a6614dc5a3f605555af46d2e
Autor:
Nada Kasm Yahya, Zyiad Hamad Youines
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 13, Iss 2, Pp 13-25 (2019)
In this paper we give a geometrical construction of a ( 56, 2)-blocking set in PG( 2, 19) and We obtain a new (325,18)- arc and a new linear code and apply the Grismer rule so that we prove it an optimal or non-optimal code, giving some examples of f
Externí odkaz:
https://doaj.org/article/6fe803ae25994258a53afc8c6a8a0630
Autor:
Nada Kasm Yahya, Mustafa Salim
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 13, Iss 1, Pp 61-86 (2019)
The purpose of this paper is to prove the existence of 17 new linear [337,3,318]19, [289,3,271]19, [266,3,249]19, [246,3,230]19, [219,3,204]19, [206,3,192]19, [181,3,168]19, [157,3,145]19, [141,3,130]19, [120,3,110]19, [112,3,103]19, [82,3,74]19, [72
Externí odkaz:
https://doaj.org/article/49939aefbc4949759bac124063875b55
Autor:
Nada Kasm Yahya
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 12, Iss 1, Pp 24-40 (2018)
A (k ,r)-arc is a set of k points of a projective plane PG(2,q) such that some r, but no r + 1 of them, are collinear. The (k ,r)-arc is complete if it is not contained in a (k + 1,r)-arc. In this paper we give geometrical construction of complete (
Externí odkaz:
https://doaj.org/article/27566ee40d454fa596994245fb6f48d6
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 13, Iss 2, Pp 13-25 (2019)
In this paper we give a geometrical construction of a ( 56, 2)-blocking set in PG( 2, 19) and We obtain a new (325,18)- arc and a new linear code and apply the Grismer rule so that we prove it an optimal or non-optimal code, giving some examples of f
Autor:
Nada Kasm Yahya, Hiba suhil najem
Publikováno v:
Al-Rafidain Journal of Computer Sciences and Mathematics, Vol 11, Iss 1, Pp 43-60 (2014)
We proved that(rq-q+r-ɛ,r)-arcs is incomplete by using minimal {ℓ,t}-Blocking set in projective plane PG(2,q)and we found a new condition for ɛ is ɛ ≥-A(r-1)2+B(r-1)-C and A,B,C is a constant which is not get previously in studies which is sea