Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Nabil Ourimi"'
Autor:
Nabil Ourimi
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 112:1305-1316
Our aim in this paper is to characterize smooth domains (D, J) and $$(D',J')$$ in almost complex manifolds of real dimension $$2n+2$$ with a covering orbit $$\{f_k (p)\}$$ , accumulating at a strongly pseudoconvex boundary point, for some $$(J,J')$$
Autor:
Nabil Ourimi, Maryam Al-Towailb
Publikováno v:
Proceedings - Mathematical Sciences. 128
Let D, $$D'$$ be arbitrary domains in $${\mathbb C}^n$$ and $${\mathbb C}^N$$ respectively, $$1
Autor:
Nabil Ourimi
Publikováno v:
Collectanea Mathematica. 66:285-295
We consider a CR mapping \(f: M\rightarrow M'\) between real-analytic hypersurfaces of finite D’Angelo type in complex spaces \({\mathbb C}^{n+1}\) and \({\mathbb C}^{N+1}\), respectively, that extends as a holomorphic correspondence to a neighborh
Autor:
Nabil Ourimi, Maryam Al-Towailb
Publikováno v:
Comptes Rendus Mathematique. 350:671-675
Let D , D ′ be arbitrary domains in C n and C N respectively, 1 n ⩽ N , both possibly unbounded and let M ⊂ ∂ D , M ′ ⊂ ∂ D ′ be open pieces of the boundaries. Suppose that ∂ D is smooth real-analytic and minimal in an open neighbor
Autor:
Nabil Ourimi
Publikováno v:
Journal of the Korean Mathematical Society. 49:17-30
Let D be an arbitrary domain in , n > 1, and be an open piece of the boundary. Suppose that M is connected and is smooth real-analytic of finite type (in the sense of D'Angelo) in a neighborhood of . Let f : be a holomorphic correspondence such that
Autor:
Besma Ayed, Nabil Ourimi
Publikováno v:
Comptes Rendus Mathematique. 347:1011-1016
Let D be a domain in C n , n > 1 , and f : D → C n be a holomorphic map. Let U ⊂ C n be an open set such that M : = ∂ D ∩ U is in U a relatively closed, connected, smooth real-analytic hypersurface of finite type (in the sense of D'Angelo). S
Autor:
Nabil Ourimi
Publikováno v:
Journal of Mathematical Analysis and Applications. 303:54-60
We study the behavior of the branch locus of proper holomorphic mappings between nondegenerate rigid polynomial domains in C n + 1 nonnecessary pseudoconvex. In particular, we show that it depends only on the first domain. This paper generalizes [Pub
Autor:
Nabil Ourimi
Publikováno v:
Annales de la faculté des sciences de Toulouse Mathématiques. 14:501-514
Nous etudions le prolongement holomorphe des correspondances holomorphes propres entre domaines polynomiaux rigides de C 2 (ou convexes de C n ). Nous montrons aussi qu'une correspondance irreductible entre de tels domaines est une application, si le
Autor:
Nabil Ourimi
Publikováno v:
Annales Polonici Mathematici. 79:97-107
Autor:
Nabil Ourimi
Publikováno v:
Proceedings of the American Mathematical Society. 128:831-836
In the present paper, we generalize Wong-Rosay's theorem for proper holomorphic mappings with bounded multiplicity. As an application, we prove the non-existence of a proper holomorphic mapping from a bounded, homogenous domain in Cn onto a domain in