Zobrazeno 1 - 10
of 60
pro vyhledávání: '"NAOR, Alon"'
Autor:
Shpiler, Amit Rose, Dorfman, Batya, Tadmor-Levi, Roni, Marcos-Hadad, Evgeniya, Perelberg, Ayana Benet, Naor, Alon, David, Lior
Publikováno v:
In Aquaculture 30 January 2025 595 Part 2
In the $\left(1:b\right)$ component game played on a graph $G$, two players, Maker and Breaker, alternately claim~$1$ and~$b$ previously unclaimed edges of $G$, respectively. Maker's aim is to maximise the size of a largest connected component in her
Externí odkaz:
http://arxiv.org/abs/2012.08821
We introduce a new type of positional games, played on a vertex set of a graph. Given a graph $G$, two players claim vertices of $G$, where the outcome of the game is determined by the subgraphs of $G$ induced by the vertices claimed by each player (
Externí odkaz:
http://arxiv.org/abs/1901.00351
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aharoni, Ron, Alon, Noga, Amir, Michal, Haxell, Penny, Hefetz, Dan, Jiang, Zilin, Kronenberg, Gal, Naor, Alon
Publikováno v:
Eur. J. Combin. 72 (2018) 29-44
For a finite family $\mathcal{F}$ of fixed graphs let $R_k(\mathcal{F})$ be the smallest integer $n$ for which every $k$-coloring of the edges of the complete graph $K_n$ yields a monochromatic copy of some $F\in\mathcal{F}$. We say that $\mathcal{F}
Externí odkaz:
http://arxiv.org/abs/1708.07369
Autor:
Molcho, Jonathan, Levy, Tom, Benet, Ayana, Naor, Alon, Savaya, Amit, Manor, Rivka, Abramov, Anna, Aflalo, Eliahu D., Shechter, Assaf, Sagi, Amir
Publikováno v:
In Aquaculture 15 January 2020 515
A graph $G = (V,E)$ is said to be saturated with respect to a monotone increasing graph property ${\mathcal P}$, if $G \notin {\mathcal P}$ but $G \cup \{e\} \in {\mathcal P}$ for every $e \in \binom{V}{2} \setminus E$. The saturation game $(n, {\mat
Externí odkaz:
http://arxiv.org/abs/1406.2111
Autor:
Grzesik, Andrzej, Mikalački, Mirjana, Nagy, Zoltán Lóránt, Naor, Alon, Patkós, Balázs, Skerman, Fiona
Publikováno v:
DMTCS 17:1, (2015) 145-160
In this paper, we study $(1 : b)$ Avoider-Enforcer games played on the edge set of the complete graph on $n$ vertices. For every constant $k\geq 3$ we analyse the $k$-star game, where Avoider tries to avoid claiming $k$ edges incident to the same ver
Externí odkaz:
http://arxiv.org/abs/1302.2555
Autor:
Hod, Rani, Naor, Alon
We study the (1:b) Maker-Breaker component game, played on the edge set of a d-regular graph. Maker's aim in this game is to build a large connected component, while Breaker's aim is to not let him do so. For all values of Breaker's bias b, we determ
Externí odkaz:
http://arxiv.org/abs/1301.0282
In this paper we analyze biased Maker-Breaker games and Avoider-Enforcer games, both played on the edge set of a random board $G\sim \gnp$. In Maker-Breaker games there are two players, denoted by Maker and Breaker. In each round, Maker claims one pr
Externí odkaz:
http://arxiv.org/abs/1210.7618