Zobrazeno 1 - 10
of 123
pro vyhledávání: '"NAMACHCHIVAYA, N. SRI"'
A better understanding of the instability margin will eventually optimize the operational range for safety-critical industries. In this paper, we investigate the almost-sure exponential asymptotic stability of the trivial solution of a parabolic semi
Externí odkaz:
http://arxiv.org/abs/2310.19255
For a pendulum suspended below a vibrating block with white noise forcing, the solution in which the pendulum remains vertical is called the single mode solution. When this solution becomes unstable there is energy transfer from the block to the pend
Externí odkaz:
http://arxiv.org/abs/2302.02256
In this paper, we present a data-driven reduced order model of viscous Moore-Greitzer (MG) partial differential equation (PDE) by threading together ideas from principal component analysis (PCA) and autoencoder neural networks to sparse regression an
Externí odkaz:
http://arxiv.org/abs/2107.08938
In this paper we prove a rate of convergence for the continuous time filtering solution of a multiple timescale correlated nonlinear system to a lower dimensional filtering equation in the limit of large timescale separation. Correlation is assumed t
Externí odkaz:
http://arxiv.org/abs/2011.12801
This paper considers the approximation of the continuous time filtering equation for the case of a multiple timescale (slow-intermediate, and fast scales) that may have correlation between the slow-intermediate process and the observation process. Th
Externí odkaz:
http://arxiv.org/abs/2010.16401
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Meng, Yiming1 (AUTHOR), Namachchivaya, N. Sri1 (AUTHOR) nsnamachchivaya@uwaterloo.ca, Perkowski, Nicolas2 (AUTHOR)
Publikováno v:
Journal of Nonlinear Science. Oct2023, Vol. 33 Issue 5, p1-36. 36p.
Publikováno v:
Phys. Rev. E 93, 062104 (2016)
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e. a pair of roots of the characteristic equation l
Externí odkaz:
http://arxiv.org/abs/1403.3029
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. We deal with linear DDEs that are on the verge of instability, i.e. a pair of roots of the characteristic equation (eigenval
Externí odkaz:
http://arxiv.org/abs/1311.4532