Zobrazeno 1 - 10
of 786
pro vyhledávání: '"NAKAMURA, Tsutomu"'
Autor:
Nakamura, Tsutomu
We give a result of Auslander-Ringel-Tachikawa type for Gorenstein-projective modules over a complete Gorenstein order. In particular, we prove that a complete Gorenstein order is of finite Cohen-Macaulay representation type if and only if every inde
Externí odkaz:
http://arxiv.org/abs/2209.15630
In the derived category of a commutative noetherian ring, we explicitly construct a silting object associated with each sp-filtration of the Zariski spectrum satisfying the "slice" condition. Our new construction is based on local cohomology and it a
Externí odkaz:
http://arxiv.org/abs/2207.01309
The definitive version is available at www.blackwell-synergy.com
Externí odkaz:
http://hdl.handle.net/2237/6972
Autor:
Kanda, Ryo, Nakamura, Tsutomu
For a module-finite algebra over a commutative noetherian ring, we give a complete description of flat cotorsion modules in terms of prime ideals of the algebra, as a generalization of Enochs' result for a commutative noetherian ring. As a consequenc
Externí odkaz:
http://arxiv.org/abs/2108.03153
Autor:
Hrbek, Michal, Nakamura, Tsutomu
We show that any homotopically smashing t-structure in the derived category of a commutative noetherian ring is compactly generated. This generalizes the validity of the telescope conjecture for commutative noetherian rings due to Neeman. As another
Externí odkaz:
http://arxiv.org/abs/1907.11030
Autor:
Nakamura, Tsutomu, Thompson, Peder
Over a commutative noetherian ring $R$ of finite Krull dimension, we show that every complex of flat cotorsion $R$-modules decomposes as a direct sum of a minimal complex and a contractible complex. Moreover, we define the notion of a semi-flat-cotor
Externí odkaz:
http://arxiv.org/abs/1907.04671
Publikováno v:
In Materials Chemistry and Physics 15 July 2023 303
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Math. Scand. 126 (2020), 209-220
Let $R$ be a commutative noetherian local ring. We define a new invariant for $R$-modules which we call the little dimension. Using it, we extend the improved new intersection theorem.
Comment: 7 pages, to appear in Math. Scand
Comment: 7 pages, to appear in Math. Scand
Externí odkaz:
http://arxiv.org/abs/1812.09704